Reconfigurable user interface for modular patient monitor

Computer graphics processing and selective visual display system – Display driving control circuitry – Controlling the condition of display elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S902000, C345S950000, C705S002000, C705S003000

Reexamination Certificate

active

06188407

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a reconfigurable user interface for a modular patient monitor, and more particularly, to a user interface which recognizes when new parameter modules and parameters are added to or removed from the patient monitor, automatically reconfigures the monitor's display to display the new parameters, and automatically updates the menu selection options for the display. A flash box on the menu is activated by certain conditions to allow rapid navigation to the most likely menu item to be selected.
2. Brief Description of the Prior Art
Conventionally, each patient in a hospital bed may have his or her vital signs monitored by a multi-parameter monitor. Such monitors are typically preconfigured to monitor certain parameters only and may not be capable of monitoring all of the necessary parameters for a particular patient. For example, every patient may or may not have an invasive line that needs monitoring. With a modular patient monitor, a single invasive pressure module can be shared among multiple monitors because it is very unlikely that more than one patient will require invasive pressure monitoring at any one time. Accordingly, a modular patient monitor, known as the DINAMAP™ MPS Select Monitor, has been developed by the present assignee to monitor patients in acute care settings such as critical care, emergency room, radiology, labor and delivery, and the operating room whereby each monitor may be reconfigured by adding or subtracting parameter modules. Using this monitor, an operator can view, record, and recall clinical data derived from each patient parameter. Separate, removable parameter modules mate with the main processor during use to selectively, and simultaneously, collect patient data such as end tidal CO
2
respiration rate, the patient's heart rate, the patient's blood pressure (invasive and noninvasive), the patient's temperature, the patient's electrocardiogram, the oxygen saturation (SpO
2
) of the patient's arterial blood, and/or the patient's respiration rate.
This monitor is specifically designed to accept many different combinations of parameter modules so that the monitor is completely reconfigurable to handle the specific monitoring needs of a particular patient. For example, the monitor may accept up to nine different parameter modules, where each module measures one or more different patient parameters. As a result, a separate monitor for each parameter is unnecessary, and it is also unnecessary to provide an additional expensive multi-parameter unit when only a few patient parameters need to be monitored.
Since the DINAMAP™ MPS Select Monitor needs to monitor multiple parameters from multiple modules, a modified input/output interface is needed which determines which parameter module is connected, in which port the parameter module is connected, and which parameters need to be communicated to/from the display processor. Since the parameter modules may be added and removed at any time, whether the monitor is on or off, it is desired that the input/output interface immediately detect a changed configuration and promptly adapt to the new configuration automatically. Also, the input/output interface should allow rapid navigation to those items most likely to be selected from the options menu, so as to save time in potentially life-saving situations. The present invention has been designed to meet these needs.
SUMMARY OF THE INVENTION
The present invention satisfies the above-mentioned needs in the art by providing a reconfigurable user interface for a modular patient monitor which automatically adapts to a new configuration of parameter modules and parameters and displays the new parameters to the operator in a new display configuration. Such a modular patient monitor in accordance with the invention preferably comprises a display which displays patient parameter data, a parameter interface which determines the patient parameters for which patient monitoring is activated, as by the insertion of the associated parameter module, and which accepts patient parameter data for presentation on the display, and a display processor which processes the patient parameter data from the parameter interface to determine which and how many patient parameters need to be displayed on the display, which allocates space on the display for vital signs and/or waveform data associated with the patient parameters to be displayed, and which automatically reallocates space for presentation of the patient parameter data on the display. The reallocation is determined using parameter settings based on operator preferences regarding the appearance on the display of the vital signs and/or waveform data associated with the patient parameters and occurs when a patient parameter is activated or deactivated, as by insertion or removal of a parameter module, during operation of the modular patient monitor. Preferably, an off-line parameter is brought into a ready state upon detection of connection of a sensor to the parameter module and from the ready state to an operating state when patient parameter data from the parameter interface is detected.
The display processor of the invention includes menu manager software which presents menus to the display for user navigation and which automatically updates menu selection options in the menus when the parameter interface provides an indication that a patient parameter has been activated or deactivated. Preferably, a parameter setup secondary menu is added as a menu selection option when an associated patient parameter is activated and is removed as a menu selection option when the associated patient parameter is deactivated. Preferably, the menu system is not modal in that the operator is not forced to make a decision or selection before changing menus and thus can explore parameter settings without changing them. Also, to maximize screen usage, a menu preferably closes after a predetermined period of inactivity of the select knob.
In accordance with another aspect of the invention, each menu contains a flash box which flashes a most likely menu selection item for selection from the menu in response to an asynchronous patient monitoring event, such as an alarm, which is detected by the parameter interface. In response to such an asynchronous patient monitoring event, the menu manager preferably places a menu selection cursor at the flash box for selection of the most likely menu selection item without further cursor movement, thereby minimizing navigation. Typically, the asynchronous patient monitoring event is a condition of the monitor, such as an alarm, requiring operator attention, and the most likely menu selection option is a menu selection option which services the condition (e.g., services the alarm condition). A plurality of such asynchronous patient monitoring events may be kept in a queue for handling in a first in, first out fashion.
In accordance with still another aspect of the invention, the patient monitor includes a parameter module which plugs into a main housing of the patient monitor so as to activate a patient parameter associated with the parameter module. Preferably, the display processor displays a graphic of the patient monitor on the display and overlays on the graphic of the patient monitor a graphic of each type of parameter module which is plugged into the main housing. A graphic of a sensor associated with an activated patient parameter is also provided which is highlighted when an operator is setting parameter settings for the activated patient parameter.
In accordance with the invention, each patient parameter preferably has a parameter settings table which specifies factory default, operator default, and active parameter settings regarding the appearance on the display of the vital signs and/or waveform data associated with that patient parameter. The operator default parameter settings are those set by an operator in a display configuration mode while the active parameter settings are those set

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reconfigurable user interface for modular patient monitor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reconfigurable user interface for modular patient monitor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reconfigurable user interface for modular patient monitor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2601243

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.