Data processing: structural design – modeling – simulation – and em – Simulating electronic device or electrical system – Computer or peripheral device
Reexamination Certificate
1999-01-13
2001-10-30
Teska, Kevin J. (Department: 2123)
Data processing: structural design, modeling, simulation, and em
Simulating electronic device or electrical system
Computer or peripheral device
C703S023000
Reexamination Certificate
active
06311149
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of test and measurement, and in particular, to a test system which provides reconfigurable testing of a wide variety of test devices.
DESCRIPTION OF THE RELATED ART
Product testing is in many ways essential to the successful development of new products and the refinement of existing products. The type of testing applied to a product is likely to evolve as the product itself matures from an initial prototype to a marketable system. For a product which is ready for mass production, it is quite typical for the product manufacturer to design dedicated test instruments for testing the product and/or its subsystems. A test instrument often includes dedicated hardware which is especially adapted for the target unit under test or UUT (i.e., the device which is to be tested) and/or for the specific series of test procedures to be applied to the target UUT. Such a test instrument is generally useless for testing devices apart from the target UUT (or set of UUTs) for which it was designed. Furthermore, a test instrument typically looses it utility when its target UUT is modified, or when the test procedures to be applied to the target UUT require alteration. The costs associated with redesigning the test instrument for the modified target UUT or for the updated test procedures contributes significantly to the overall cost of the product.
The telecommunication industry is a prime example of an industry which suffers from the rapid obsolescence of test systems. The telecommunication industry has expanded rapidly in response to improvements in device technologies and escalating public demand for telecommunication services. This expansion can be measured by the number of new telecommunication products/devices marketed each year. In order to test and validate a telecommunication device, manufacturers may rely on a test system which has been custom designed for the telecommunication device.
Consider the example of cellular phone technology. Cellular phones are quite typically designed with an RF transceiver card and a controller card which communicate with one another via a serial bus. One prior art solution for testing cellular phones involves the use of a specialized hardware test board. The hardware test board couples to a card which is to be tested, and emulates the complementary card. The hardware test board is typically connected to a host computer. A software program running on the host computer controls and monitors a test procedure which is implemented by the hardware test board. Because the hardware test board typically includes dedicated hardware adapted for communicating with the card under test, its utility may come to an end when the card under test is modified. The time required to redesign a hardware test board is a burden on the development cycle of new products, and contributes significantly to the end cost of these products.
Thus, there exists a substantial need for a test system with reconfigurable hardware which could rapidly and inexpensively adapt to changes in a target UUT, or changes in the test procedures to be applied to the target UUT. Similarly, there exists a significant need for a test system with reconfigurable hardware which could be rapidly and inexpensively modified to support any desired target UUT and any desired set of test procedures.
Another problem inherent in telecommunication testing is the proliferation of telecommunication protocols. Manufacturers of test systems attempt to provide support for any existing telecommunication protocols that are likely to be of interest to their customers. Because test systems quite often commit the details of protocol handling to dedicated hardware, test systems quickly become useless or obsolete when new protocols emerge. In addition, telecommunication companies utilize many internal communication standards which are proprietary. Such companies may be forced to design their own test system for testing products conforming to the internal standards. Thus, there is a profound need for a test system with reconfigurable hardware which may be rapidly configured to handle any desired communication protocol.
SUMMARY OF THE INVENTION
The problems outlined above are largely resolved by the reconfigurable test system and method of the present invention. The reconfigurable test system includes a host computer coupled to a reconfigurable test instrument (RTI). The RTI is configured for coupling to a unit under test through a communication medium. The RTI preferably includes a reconfigurable hardware module, a reconfigurable front end, and optionally an embedded processor with local memory. The reconfigurable hardware module preferably includes one or more reconfigurable or programmable hardware devices such as Field Programmable Gate Arrays (FPGAs). Thus, the reconfigurable hardware module may be programmed to realize any desired hardware architecture. The reconfigurable front end preferably includes programmable transceivers which may be programmed to interface with any desired types of signals using any desired line encoding scheme, voltage levels, etc. If an embedded processor is present on the RTI, an additional measure of programmability is afforded by appropriate selection of the embedded instruction code to be executed by the embedded processor.
Because of the combination of reconfigurable technologies incorporated in the RTI, the RTI may be programmed to operate with any desired type of UUT, any desired communication medium, any desired protocol(s) for signal exchange over the communication medium, and any desired test procedure, etc. Furthermore, these reconfigurable technologies also allow the RTI to be rapidly reprogrammed or updated in response to changes in the UUT, changes in the communication medium, changes in the protocol(s) used for signal exchange over the communication medium, changes in the desired test procedure, etc.
A user may specify a set of desired operational characteristics for the reconfigurable test system utilizing a software configuration utility running on the host computer. The software configuration utility presents the user with a variety of choices of operational features such as, for example: a desired number of communication channels to be programmed into the RTI for signal exchange with the UUT; a desired directionality (input/output) for each of the communication channels; telecommunication protocols to be used for each of the communication channels; a line encoding scheme for receiving or transmitting signals from/to the UUT on each communication channel; voltages levels to be used for multi-level signal reception or transmission on each of the channels; synchronous versus asynchronous transfer; etc. In response to the user selections, a component selector program selects a hardware architecture file from a hardware architecture library, a front-end configuration file from a front-end configuration library, a number of host driver modules from a host software library, and optionally one or more embedded software programs from an embedded code library. The libraries include files for any possible combination of user choices. The hardware architecture file is downloaded to the reconfigurable hardware module on the RTI. The front end configuration file is downloaded to the reconfigurable front end on the RTI. The host driver modules are registered with a host software driver. The one or more embedded software programs are downloaded to embedded memory for execution by a local processor on the RTI. The downloaded files and registered modules posits or configures the reconfigurable test system with the operational attributes selected by the user with the configuration utility. A software test application executing on the host computer controls and monitors the reconfigurable test system
100
by making calls to the software driver.
Alternatively, a user may create a graphical program in a graphical programming environment which allows the user to select, manipulate, and interconnect graphical icons. The graphical icons represe
Andrade Hugo
Ryan Arthur
Conley Rose & Tayon PC
Hood Jeffrey C.
Jones Hugh
National Instruments Corporation
Teska Kevin J.
LandOfFree
Reconfigurable test system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Reconfigurable test system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reconfigurable test system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2579339