Recombinant viruses comprising the membrane-proximal domain...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023400, C536S023500, C435S006120, C435S325000, C530S300000, C514S002200

Reexamination Certificate

active

07994295

ABSTRACT:
Recombinant viruses, isolated nucleic acids and methods of generating same encoding for a Rhabdoviral G stem polypeptide are disclosed. Methods, compounds and compositions for target cell fusion potentiation mediated by Rhabdoviral G stem polypeptides, and applications of same are provided.

REFERENCES:
patent: 6168943 (2001-01-01), Rose
patent: 2002/0086356 (2002-07-01), Tuschl et al.
patent: WO 03/092582 (2003-11-01), None
Kretzschmar et al., J Virol, 1997, 71: 5982-5989.
Schnell et al., Proc Natl. Acad. Sci USA, 1996, 93: 11359-11365.
Mackett et al., Science, 1985, 227: 433-435.
Li et al. , J Virol, 1993, 67: 4070-4077.
Schnell et al., Proc Nati Acad Sci USA, Oct. 1996, 93: 11359-11365.
Rose et al., J Virol, 1981, 39: 519-528.
Somia et al., Proc Natl Acad Sci USA, 1995, 92: 7570-7574.
Lawson et al., Proc Natl Acad Sci USA, 1995, 92: 4477-4481.
Schnell et al., J. Virol., 1996, 70: 2318-2323.
U.S. Appl. No. 60/068,472, filed Apr. 2002, US, Kobinger et al.
Berger, E. A., et al (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol. 17:657-700.
Blumenthal, R., et al (1987) pH-dependent fusion of vesicular stomatitis virus with Vero cells. Measurement by dequenching of octadecyl rhodamine fluorescence. J Biol Chem. 262:13614-13619.
Bricker B.J., et al (1987). Monoclonal antibodies to the glycoprotein of vesicular stomatitis virus (New Jersey serotype): A method for preliminary mapping of epitopes. Virology. 161:533-540.
Broder, C. C., et al (1993) The block to HIV-1 envelope glycoprotein-mediated membrane fusion in animal cells expressing human CD4 can be overcome by a human cell component(s). Virology. 1993:483-491.
Chernomordik, L., et al (1995) The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. Biophys J. 69:922-929.
Cathomen, T. et al (1998) Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J. Virol. 72: 1224-1234.
Chu T. H. T et al (1997) Toward highly efficient cell-type-specific gene transfer with retroviral vectors displaying single-chain antibodies, Journal of Virology, vol. 71, No. 1, pp. 720-725.
Dolter K. E. et al (1993) Incorporation of CD4 into Virions by a Recombinant Herpes Simplex Virus, Journal of Virology, vol. 67, No. 1 pp. 189-195.
Doms, R. W., et al (2000) HIV-1 membrane fusion: targets of opportunity. J Cell Biol. 151:9-14.
Durrer, P., et al (1995) Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. J. Biol. Chem. 270:17575-17581.
Fan, D. P., et al (1978) The entry into host cells of Sindbis virus, vesicular stomatitis virus, and Sendai virus. Cell. 15:985-992.
Feng, Y., et al (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 272:872-877.
Florkiewicz, R. Z., et al (1984) A cell line expressing vesicular stomatitis virus glycoprotein fuses at low pH. Science. 225:721-723.
Fredericksen, B. L., et al (1998) Attenuation of recombinant vesicular stomatitis viruses encoding mutant glycoproteins demonstrates a critical role for maintaining a high pH threshold for membrane fusion in viral fitness. Virology. 240:349-358.
Fredericksen, B. L., et al (1996) Mutations at two conserved acidic amino acids in the glycoprotein of vesicular stomatitis virus affect pH-dependent conformational changes and reduce the pH threshold for membrane fusion. Virology. 217:49-57.
Fredericksen, B. L., et al (1995) Vesicular stomatitis virus glycoprotein mutations that affect membrane fusion activity and abolish virus infectivity. J Virol. 69:1435-1443.
Fuerst, T. R. et al (1987) Use of a hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes. Mol Cell Biol. 7:2538-2544.
Gaudin, Y., et al (1996) Identification of amino acids controlling the low-pH-induced conformational change of rabies virus glycoprotein. J. Virol. 70:7371-7378.
Galmiche M.C. et al (1997) Expression of a functional single chain antibody on the surface of extracellular enveloped vaccinia virus as a step towards selective tumour cell targeting.
Helenius, A. (1993) Influenza virus fusion: From models towards a mechanism. p. 89-111. In J. Bentz (ed.), Viral fusion mechanisms, vol. 1. CRC press, Ann Arbor.
Horvath, C. M., et al (1992) Biological activity of paramyxovirus fusion proteins: factors influencing formation of syncytia. J. Virol. 66:4564-4569.
Jayakar, H. R., et al (2000) Mutations in the PPPY motif of vesicular stomatitis virus matrix protein reduce virus budding by inhibiting a late step in virion release. J Virol. 74:9818-9827.
Jeetendra, E. et al (2001) Characterization of the minimal budding domain in the vesicular stomatitis virus (VSV) glycoprotein, p. 96: W19-2. 20th Annual Meeting of the American Society for Virology, University of Wisconsin-Madison, Madison, Wisconsin.
Johnson J. E. (1997) Specific targeting to CD4+Cells of Recombinant Vesicular Stomatitis Viruses Encoding Human Immunodeficiency Virus Envelope Proteins, Journal of Virology, vol. 7 No. 7, pp. 5060-5068.
Kuzmin, P. I. et al (2001) A quantitative model for membrane fusion based on low-energy intermediates. Proc Natl Acad Sci U S A. 98:7235-7240.
Kreis, T. E., et al (1986) Oligomerization is essential for transport of vesicular stomatitis virus glycoprotein to the cell surface. Cell. 46:929-937.
Lamb R. A. (1993) Mini review: Paramyxovirus Fusion: A Hypothesis for Changes, Virology 197, 1-11.
Lawson, N., et al (1995) Recombinant vesicular stomatitis viruses from DNA. Proc. Natl. Acad. Sci. (USA). 92:4477-4481.
Lefrancois, L., et al (1982) The interaction of antibody with the major surface glycoprotein of vesicular stomatitis virus. I. Analysis of neutralizing epitopes with monoclonal antibodies. Virology. 121:157-167.
Li, Y., C. Drone, E. Sat, and H. P. Ghosh. 1993. Mutational analysis of the vesicular stomatitis virus glycoprotein G for membrane fusion domains. J. Virol. 67:4070-4077.
Marin M, et al (1996) Targeted Infection of Human Cells vi9a Major Histocompatibility Complex Class I Molecules by Moloney Murine Leukemia Virus-Derived Viruses Displaying Single-Chain Antibody Fragment-Envelope Fusion Proteins, Journal of Virology, vol. 70, No. 5, pp. 2957-2962.
Marsh, M., et al (1989) Virus entry into animal cells. Adv. Virus Res. 36:107-151.
Matsushita, S., et al (1988) Characterization of a human immunodeficiency virus neutralizing monoclonal antibody and mapping of the neutralizing epitope. J Virol. 62:2107-2114.
McCallus, D. E., et al (1992) Construction of a recombinant bacterial human CD4 expression system producing a bioactive CD4 molecule. Viral Immunol. 5:163-172.
Mebatsion T. et al (1996) Budding of Rabies Virus Particles in the Absence of the Spike Glycoprotein, Cell, vol. 84, pp. 941-951.
Mebatsion T. et al (1996) Specific Infection of CD4+target cells by recombinant rabies virus pseudotypes carrying the HIV-1 envelope spike protein, Proc. Natl. Acad. Sci. Vo. 93, pp. 11366-11370.
Mebatsion T. et al (1997) A CXCR4/CD4 Pseudotype Rhabdovirus that selectively infects HIV-1 Envelope Protein-Expressing Cells, Cell, vol. 90, pp. 841-847.
Melikyan, G. B., et al (1997) Inner but not outer membrane leaflets control the transition from glycosylphosphatidylinositol-anchored influenza hemagglutinin-induced hemifusion to full fusion. J Cell Biol. 136:995-1005.
Munoz-Barroso, I. et al (1999) Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J Virol. 73:6089-6092.
Munoz-Barroso, I., et al (1998) Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41. J Cell Biol. 140:315-323.
Niwa, H., et al (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 108:193-199.
Nolan G. P. (1997) Harnessing viral devices as Pharmaceuticals: fighting HIV01's Fire with Fire, Cell. vol. 90, pp. 821-824.
Ohnishi, S. (1988) Fusion of vi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Recombinant viruses comprising the membrane-proximal domain... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Recombinant viruses comprising the membrane-proximal domain..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recombinant viruses comprising the membrane-proximal domain... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2723116

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.