Recombinant tryptophan mutants of influenza

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving virus or bacteriophage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S069100, C424S206100, C536S023720

Reexamination Certificate

active

06322967

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to influenza virus immunogenic compositions and methods of producing such compositions. More specifically, this invention relates to influenza virus immunogenic compositions having discreet, specifically engineered mutations in the native PB2 polymerase RNA sequence of influenza resulting in the deletion of, and/or substitution of, at least one of the native tryptophan amino acid residues in the PB2 protein.
BACKGROUND
Influenza is an enveloped, single-stranded, negative-sense RNA virus that causes serious respiratory ailments throughout the world. It is the only member of the Orthomyxoviridae family and has been subgrouped into three types, A, B and C.
Influenza virions consist of an internal ribonucleoprotein core containing the single-stranded RNA genome and an outer lipoprotein envelope lined inside by a matrix (hereinafter “M1”) protein. The segmented genome of influenza A consists of eight molecules of linear, negative polarity, single-stranded RNA sequences that encode ten polypeptides. Segment 1 is 2341 nucleotides in length and encodes PB2, a 759 amino acid polypeptide which is one of the three proteins which comprise the RNA-dependent RNA polymerase complex. The remaining two polymerase proteins, PB1, a 757 amino acid polypeptide, and PA, a 716 amino acid polypeptide, are encoded by a 2341 nucleotide sequence and a 2233 nucleotide sequence (segments 2 and 3), respectively. Segment 4 of the genome consists of a 1778 nucleotide sequence encoding a 566 amino acid hemagglutin (HA) surface glycoprotein which projects from the lipoprotein envelope and mediates attachment to and entry into cells. Segment 5 consists of 1565 nucleotides encoding a 498 amino acid nucleoprotein (NP) protein that forms the nucleocapsid. Segment 6 consists of a 1413 nucleotide sequence encoding a 454 amino acid neuraminidase (NA) envelope glycoprotein. Segment 7 consists of a 1027 nucleotide sequence encoding a 252 amino acid M1 protein, and a 96 amino acid M2 protein, which is translated from a spliced variant of the M RNA. Segment 8 consists of a 890 nucleotide sequence encoding two nonstructural proteins, NS1 and NS2, composed of 230 and 121 amino acids respectively, whose function is not well defined. NS2 is translated from a spliced variant of the NS RNA.
The segmented genome of influenza B consists of eight molecules of linear, negative polarity, single-stranded RNA sequences that encode eleven polypeptides. Segment 2 is 2396 nucleotides in length and encodes PB2, a 770 amino acid polypeptide which is one of the three RNA-dependent RNA polymerase proteins. The remaining two influenza B polymerase proteins, PB1, a 752 amino acid polypeptide, and PA, a 725 amino acid polypeptide, are encoded by a 2386 nucleotide sequence and a 2304 nucleotide sequence (segments 1 and 3), respectively. Segment 4 of the genome consists of a 1882 nucleotide sequence encoding a 584 amino acid HA surface glycoprotein which projects from the lipoprotein envelope and mediates attachment to cells and membrane fusion. Segment 5 consists of 1839-1841 nucleotides encoding a 560 amino acid NP protein that forms the nucleocapsid. Segment 6 consists of a 1454 nucleotide sequence encoding a 466 amino acid NA envelope glycoprotein and a 100 amino acid NB protein, a nonstructural protein whose function is unknown. Segment 7 consists of a 1191 nucleotide sequence encoding a 248 amino acid M1 protein and a 195 amino acid BM2 protein which is translated from a separate reading frame. Segment 8 consists of a 1096 nucleotide sequence encoding nonstructural proteins NS1 and NS2, composed of 281 and 122 amino acids respectively, whose functions are not well defined. NS2 is translated from a spliced variant of the NS RNA.
The segmented genome of influenza C consists of seven molecules of linear, negative polarity, single-stranded RNA sequences that encode eight polypeptides. Segment 1 is 2365 nucleotides in length and encodes PB2, a 774 amino acid polypeptide which is one of the three RNA-dependent RNA polymerase proteins. The remaining two polymerase proteins, PB1, a 754 amino acid polypeptide, and PA, a 709 amino acid polypeptide, are encoded by a 2363 nucleotide sequence and a 2183 nucleotide sequence (segments 2 and 3), respectively. Segment 4 of the genome consists of a 2074 nucleotide sequence encoding a 655 amino acid hemagglutinin-esterase surface glycoprotein which projects from the lipoprotein envelope and mediates attachment to cells, fusion, and has receptor-destroying activities. Segment 5 consists of a 1809 nucleotide sequence encoding a 565 amino acid NP protein that forms the nucleocapsid. Segment 6 consists of a 1180 nucleotide sequence encoding a 374 amino acid matrix (M) protein. Segment 7 consists of a 934 nucleotide sequence encoding a 286 amino acid NS1 protein, and a 122 amino acid NS2 protein, which is translated from a spliced variant of the NS RNA.
To infect a cell influenza HA protein adsorbs to sialyloligosaccharide molecules in cell membrane glycoproteins and glycolipids. Following endocytosis of the virion, a conformational change in the HA molecule occurs within the cellular endosome that facilitates membrane fusion and triggers uncoating. The nucleocapsid migrates to the nucleus where viral mRNA is transcribed as the essential initial event in infection. Transcription and replication of influenza RNA take place in the nucleus of infected cells and assembly into virions occurs by budding out of or through the plasma membrane. Viruses can reassort genes during mixed infections.
Replication of influenza virus RNAs is dependent on four viral gene products: PB1, PB2, PA, and NP. The three polymerase proteins, PB1, PB2, and PA, form a trimolecular complex in the nuclei of infected cells. Some specific functions have been ascribed to the individual polypeptides. PB1 appears to be primarily involved in the enzymatic polymerization process, i.e. the elongation step. It shares regions of amino acid sequence similarity with other RNA-dependent RNA polymerase proteins. The precise function of PA is unknown. The PB2 protein binds to the 5′-terminal cap structure present on host cell mRNAs; the mRNAs are then cleaved, producing a capped 9 to 15-mer oligoribonucleotide which serves as a primer for transcription of influenza mRNAs. See Plotch,
Cell
23: 847-58 (1981). Thus, it is suspected that PB2 has cap-binding and endonuclease activities. While it is thought that PB2 is not absolutely required for replication of viral RNA, mRNAs transcribed from viral template in cells expressing only PB1, PA, and NP are uncapped and thus cannot be translated. See Nakagawa,
J Virol
69:728-33 (1995). Transcripts terminate at sites 15-22 bases from the ends of their templates, where oligo(U) sequences act as signals for the template-independent addition of poly(A) tracts. At a later stage of infection, instead of making mRNAs, the polymerase proteins PB1, PB2 and PA are used to make new viral RNA genomes. The polymerase complex transcribes cRNA, which then serves as template for production of more vRNA. The plus-stranded cRNA copies differ from the plus-stranded mRNA transcripts by lacking capped and methylated 5′-termini. Also, they are not truncated or polyadenylated at the 3′ termini. Thus, the cRNAs are coterminal with their negative strand templates and contain all the genetic information in each genomic segment in the complementary form.
The negative strand genomes (vRNAs) and antigenomes (cRNAs) are always encapsidated by viral nucleocapsid proteins; the only unencapsidated RNA species are virus mRNAs. Nucleocapsid assembly appears to take place in the nucleus. The virus matures by budding from the apical surface of the cell incorporating the M1 protein on the cytoplasmic side or inner surface of the budding envelope. The HA and NA glycoproteins are incorporated into the lipid envelope. In permissive cells, HA is post-translationally cleaved, but the two resulting chains remain associated by disulfide bonds.
Efforts to produce immunogenic compositions against

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Recombinant tryptophan mutants of influenza does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Recombinant tryptophan mutants of influenza, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recombinant tryptophan mutants of influenza will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2577508

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.