Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Recombinant virus encoding one or more heterologous proteins...
Reexamination Certificate
1995-06-07
2002-12-24
Mosher, Mary E. (Department: 1648)
Drug, bio-affecting and body treating compositions
Antigen, epitope, or other immunospecific immunoeffector
Recombinant virus encoding one or more heterologous proteins...
C424S093200, C435S235100, C435S320100
Reexamination Certificate
active
06497882
ABSTRACT:
BACKGROUND OF THE INVENTION
Swinepox virus (SPV) belongs to the family Poxviridae. Viruses belonging to this group are large, double-stranded DNA viruses that characteristically develop in the cytoplasm of the host cell. SPV is the only member of the genus Suipoxvirus. Several features distinguish SPV from other poxviruses. SPV exhibits species specificity (18) compared to other poxviruses such as vaccinia which exhibit a broad host range. SPV infection of tissue culture cell lines also differs dramatically from other poxviruses (24). It has also been demonstrated that SPV does not exhibit antigenic cross-reactivity with vaccinia virus and shows no gross detectable homology at the DNA level with the ortho, lepori, avi or entomopox virus groups (24). Accordingly, what is known and described in the prior art regarding other poxviruses does not pertain a priori to swinepox virus.
SPV is only mildly pathogenic, being characterized by a self-limiting infection with lesions detected only in the skin and regional lymph nodes. Although the SPV infection is quite limited, pigs which have recovered from SPV are refractory to challenge with SPV, indicating development of active immunity (18).
The present invention concerns the use of SPV as a vector for the delivery of vaccine antigens and therapeutic agents to swine. The following properties of SPV support this rationale: SPV is only mildly pathogenic in swine, SPV is species specific, and SPV elicits a protective immune response. Accordingly, SPV is an excellent candidate for a viral vector delivery system, having little intrinsic risk which must be balanced against the benefit contributed by the vector's vaccine and therapeutic properties.
The prior art for this invention stems first from the ability to clone and analyze DNA while in bacterial plasmids. The techniques that are available are detailed for the most part in Maniatis et al., 1983 and Sambrook et al., 1989. These publications teach state of the art general recombinant DNA techniques.
Among the poxviruses, five (vaccinia, fowlpox, canarypox, pigeon, and raccoon pox) have been engineered, previous to this disclosure, to contain foreign DNA sequences. Vaccinia virus has been used extensively to vector foreign genes (25) and is the subject of U.S. Pat. Nos. 4,603,112 and 4,722,848. Similarly, fowlpox has been used to vector foreign genes and is the subject of several patent applications EPA 0 284 416, PCT WO 89/03429, and PCT WO 89/12684. Raccoon pox (10) and Canarypox (31) have been utilized to express antigens from the rabies virus. These examples of insertions of foreign genes into poxviruses do not include an example from the genus Suipoxvirus. Thus, they do not teach methods to genetically engineer swinepox viruses, that is, where to make insertions and how to get expression in swinepox virus.
The idea of using live viruses as delivery systems for antigens has a very long history going back to the first live virus vaccines. The antigens delivered were not foreign but were naturally expressed by the live virus in the vaccines. The use of viruses to deliver foreign antigens in the modern sense became obvious with the recombinant vaccinia virus studies. The vaccinia virus was the vector and various antigens from other disease causing viruses were the foreign antigens, and the vaccine was created by genetic engineering. While the concept became obvious with these disclosures, what was not obvious was the answer to a more practical question of what makes the best candidate virus vector. In answering this question, details of the pathogenicity of the virus, its site of replication, the kind of immune response it elicits, the potential it has to express foreign antigens, its suitability for genetic engineering, its probability of being licensed by regulatory agencies, etc, are all factors in the selection. The prior art does not teach these questions of utility.
The prior art relating to the use of poxviruses to deliver therapeutic agents relates to the use of a vaccinia virus to deliver interleukin-2 (12). In this case, although the interleukin-2 had an attenuating effect on the vaccinia vector, the host did not demonstrate any therapeutic benefit.
The therapeutic agent that is delivered by a viral vector of the present invention must be a biological molecule that is a by-product of swinepox virus replication. This limits the therapeutic agent in the first analysis to either DNA, RNA or protein. There are examples of therapeutic agents from each of these classes of compounds in the form of anti-sense DNA, anti-sense RNA (16), ribozymes (34), suppressor tRNAs (2), interferon-inducing double stranded RNA and numerous examples of protein therapeutics, from hormones, e.g., insulin, to lymphokines, e.g., interferons and interleukins, to natural opiates. The discovery of these therapeutic agents and the elucidation of their structure and function does not make obvious the ability to use them in a viral vector delivery system.
SUMMARY OF THE INVENTION
This invention provides a recombinant swinepox virus comprising a foreign DNA sequence inserted into the swinepox virus genomic DNA, wherein the foreign DNA sequence is inserted within a HindIII K fragment of the swinepox virus genomic DNA and is capable of being expressed in a swinepox virus infected host cell.
The invention further provides homology vectors, vaccines and methods of immunization.
REFERENCES:
patent: 6217882 (2001-04-01), Moyer et al.
patent: 0284416 (1988-09-01), None
patent: 8903429 (1989-04-01), None
patent: 93/14194 (1993-07-01), None
patent: WO8912684 (1999-12-01), None
R. A. Bhat, et al. (1989), “Efficient Expression of Small RNA Polymerase III Genses From a Noval Simina 40 Vector and Their Effect on Viral Gene Expression”, Nucleic Acids Research 17: 1159-1176.
J.J. Esposito, et al. (1988), “Successful Oral Rabies Vaccination of Raccoons with Raccoon Poxvirus Recombinats Expressing Rabies Virus Glycprotein”, Virology 165: 313-316.
S. Joshi, et al. (1991), “Inhibition of Human Immunodeficiency Virus Type 1 Multiplication by Antisense and Sense RNA Expression”, Journal of Virology; 65: 5524-5530.
C. Flexner, et al. (1990), “Attenuation and Immunogenicity in Primates of Vaccinia Virus Recombinats Expressing Human Interleukin-2”, Vaccines 8: 17-21.
L. Kasza (1981) Diseases of Swine, 254-260, Ed. A.D. Leman, et al., The Iowa State University Press.
R.F. Massung and R.W. Moyer, (1991) “The Molecular Biology of Swinepox Virus; A Caharacterization of the Viral DNA”, Virology 180: 347-354.
R.F. Massung and R.W. Moyer, (1991) “The Molecular Biology of Swinepox Virus; The Infectious Cycle”, Virology 180: 355-365.
J. Taylor, et al. (1991) “Efficacy Studies on a Canarypox-rabies Recombinant Virus”, Vaccine 9:190-193.
W.M. Schnitzlein and D.N. Tripathy (1991), “Identification and Nucleotide Sequence of the Thymidine Kinase Gene of Swinepox Virus”, Virology 181: 727-732.
M. Wachsman, et al. (1989) “Antigen-presenting Capacity of Epidermal Cells Infected with Vaccinia Virus Recombinants Containing the Herpes Simplex Virus Glcoprotein D, and Protective Immunity”, Journal of General Virology 70: 2513-2520.
P.P Williams, et al. (1989) “Immunologival Responses of Cross-bred and In-bred Miniature Pigs to Swine Poxvirus”, Veterinary Immunology and Immunopathology 23: 149-159.
J.A. Feller, et al. (1991) “Isolation and Molecular Characterization of the Swinepox Virus Thymidine Kinase Gene”, Virology 183: 578-585.
M. Riviere, et al. (1992) “Protection of Mice and Swine from Pseudorabies Virus Conferred by Vaccinia Virus-Based Recombinants”, Journal of Virology 66:3423-3434 (Exhibit 1).
R.F. Massung, et al. (1993) “DNA Sequence Analysis of Conserved and Unique Regions of Swinepox Virus: Identification of Genetic Elements Supporting Phenotypic Observations Including a Novel G Protein-Coupled Receptor Homologue”, Virology 197: 511-528 (Exhibit 2).
T. Tuboly, et al. (1993) “Potential Viral Vectors For the Stimulation of Mucosal Antibody Responses Against Enteric Viral Antigens in Pigs”, Research in Veterinary Science 54: 345-350 (Exhibi
Cochran Mark D.
Junker David E.
Mosher Mary E.
Syntro Corporation
LandOfFree
Recombinant swinepox virus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Recombinant swinepox virus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recombinant swinepox virus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2987239