Recombinant newcastle disease virus RNA expression systems...

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Virus or component thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S192100, C536S023400, C536S023720

Reexamination Certificate

active

06451323

ABSTRACT:

1. INTRODUCTION
The invention was made with government support under grant numbers 97308MI and 73054MI awarded by the National Institutes of Health. The Government has certain rights in these inventions.
The present invention relates to recombinant Newcastle disease virus RNA templates which may be used to express heterologous gene products in appropriate host cell systems and/or to construct recombinant viruses that express, package, and/or present the heterologous gene product. The expression products and chimeric viruses may advantageously be used in vaccine formulations. The present invention also relates to genetically engineered recombinant Newcastle disease viruses which contain modifications and/or mutations that make the recombinant virus suitable for use in vaccine formulations, such as an attenuated phenotype or enhanced immunogenicity.
The present invention relates to recombinant Newcastle disease viruses which induce interferon and related pathways. The present invention relates to the use of the recombinant Newcastle disease viruses and viral vectors against a broad range of pathogens and/or antigens, including tumor specific antigens. The invention is demonstrated by way of examples in which recombinant Newcastle disease virus RNA templates containing heterologous gene coding sequences in the negative-polarity were constructed. The invention further relates to the construction of recombinant Newcastle disease virus RNA templates containing heterologous gene coding sequences in the positive-polarity. Such heterologous gene sequences include sequences derived from a human immunodeficiency virus (HIV).
2. BACKGROUND OF THE INVENTION
A number of DNA viruses have been genetically engineered to direct the expression of heterologous proteins in host cell systems (e.g., vaccinia virus, baculovirus, etc.). Recently, similar advances have been made with positive-strand RNA viruses (e.g., poliovirus). The expression products of these constructs, i.e., the heterologous gene product or the chimeric virus which expresses the heterologous gene product, are thought to be potentially useful in vaccine formulations (either subunit or whole virus vaccines). One drawback to the use of viruses such as vaccinia for constructing recombinant or chimeric viruses for use in vaccines is the lack of variation in its major epitopes. This lack of variability in the viral strains places strict limitations on the repeated use of chimeric vaccinia, in that multiple vaccinations will generate host-resistance to the strain so that the inoculated virus cannot infect the host. Inoculation of a resistant individual with chimeric vaccinia will, therefore, not induce immune stimulation.
By contrast, the negative-strand RNA viruse, would be attractive candidates for constructing chimeric viruses for use in vaccines. The negative-strand RNA virus, influenza, for example is desirable because its wide genetic variability allows for the construction of a vast repertoire of vaccine formulations which stimulate immunity without risk of developing a tolerance. Recently, construction of infectious recombinant or chimeric negative-strand RNA particles was achieved with the influenza virus (U.S. Pat. No. 5,166,057 to Palese et al., incorporated herein by reference in its entirety).
2.1. The Newcastle Disease Virus
Virus families containing enveloped single-stranded RNA of the negative-sense genome are classified into groups having non-segmented genomes (Paramyxoviridae, Rhabdoviridae) or those having segmented genomes (Orthomyxoviridae, Bunyaviridae and Arenaviridae). The Paramyxoviridae family, described in detail below, and used in the examples herein, contain the viruses of Newcastle disease virus (NDV), parainfluenza virus, Sendai virus, simian virus 5, and mumps virus.
The Newcastle disease Virus is an enveloped virus containing a linear, single-strand, nonsegmented, negative sense RNA genome. The genomic RNA contains genes in the order of 3′-NP-P-M-F-HN-L, described in further detail below. The genomic RNA also contains a leader sequence at the 3′ end.
The structural elements of the virion include the virus envelope which is a lipid bilayer derived from the cell plasma membrane. The glycoprotein, hemagglutinin-neuraminidase (HN), protrudes from the envelope allowing the virus to contain both hemagglutinin and neuraminidase activities. The fusion glycoprotein (F), which also interacts with the viral membrane, is first produced as an inactive precursor, then cleaved post-translationally to produce two disulfide linked polypeptides. The active F protein is involved in penetration of NDV into host cells by facilitating fusion of the viral envelope with the host cell plasma membrane. The matrix protein (M), is involved with viral assembly, and interacts with both the viral membrane as well as the nucleocapsid proteins.
The main protein subunit of the nucleocapsid is the nucleocapsid protein (NP) which confers helical symmetry on the capsid. In association with the nucleocapsid are the P and L proteins. The phosphoprotein (P), which is subject to phosphorylation, is thought to play a regulatory role in transcription, and may also be involved in methylation, phosphorylation and polyadenylation. The L gene, which encodes an RNA-dependent RNA polymerase, is required for viral RNA synthesis together with the P protein. The L protein, which takes up nearly half of the coding capacity of the viral genome is the largest of the viral proteins, and plays an important role in both transcription and replication.
The replication of all negative-strand RNA viruses, including NDV, is complicated by the absence of cellular machinery required to replicate RNA. Additionally, the negative-strand genome can not be translated directly into protein, but must first be transcribed into a positive-strand (mRNA) copy. Therefore, upon entry into a host cell, the genomic RNA alone cannot synthesize the required RNA-dependent RNA polymerase. The L, P and NP proteins must enter the cell along with the genome on infection.
It is hypothesized that most or all of the viral proteins that transcribe NDV mRNA also carry out their replication. The mechanism that regulates the alternative uses (i.e., transcription or replication) of the same complement of proteins has not been clearly identified but appears to involve the abundance of free forms of one or more of the nucleocapsid proteins, in particular, the NP. Directly following penetration of the virus, transcription is initiated by the L protein using the negative-sense RNA in the nucleocapsid as a template. Viral RNA synthesis is regulated such that it produces monocistronic mRNAs during transcription.
Following transcription, virus genome replication is the second essential event in infection by negative-strand RNA viruses. As with other negative-strand RNA viruses, virus genome replication in Newcastle disease virus (NDV) is mediated by virus-specified proteins. The first products of replicative RNA synthesis are complementary copies (i.e., plus-polarity) of NDV genome RNA (cRNA). These plus-stranded copies (anti-genomes) differ from the plus-strand mRNA transcripts in the structure of their termini. Unlike the mRNA transcripts, the anti-genomic cRNAs are not capped and methylated at the 5′ termini, and are not truncated and polyadenylated at the 3′ termini. The cRNAs are coterminal with their negative strand templates and contain all the genetic information in each genomic RNA segment in the complementary form. The cRNAs serve as templates for the synthesis of NDV negative-strand viral genomes (vRNAs).
Both the NDV negative strand genomes (vRNAs) and antigenomes (cRNAs) are encapsidated by nucleocapsid proteins; the only unencapsidated RNA species are virus mRNAs. For NDV, the cytoplasm is the site of virus RNA replication, just as it is the site for transcription. Assembly of the viral components appears to take place at the host cell plasma membrane and mature virus is released by budding.
2.2. Engineering Negative Strand RNA Viruses
The RNA-directed RNA polymeras

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Recombinant newcastle disease virus RNA expression systems... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Recombinant newcastle disease virus RNA expression systems..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recombinant newcastle disease virus RNA expression systems... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2901050

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.