Recombinant methods and materials for producing epothilones...

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing compound containing saccharide radical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06303342

ABSTRACT:

FIELD OF THE INVENTION
The present invention provides recombinant methods and materials for producing epothilone and epothilone derivatives. The invention relates to the fields of agriculture, chemistry, medicinal chemistry, medicine, molecular biology, and pharmacology.
BACKGROUND OF THE INVENTION
The epothilones were first identified by Gerhard Hofle and colleagues at the National Biotechnology Research Institute as an antifungal activity extracted from the myxobacterium
Sorangium cellulosum
(see K. Gerth et al., 1996, J. Antibiotics 49: 560-563 and Germany Patent No. DE 41 38 042). The epothilones were later found to have activity in a tubulin polymerization assay (see D. Bollag et al., 1995, Cancer Res. 55:2325-2333) to identify antitumor agents and have since been extensively studied as potential antitumor agents for the treatment of cancer.
The chemical structure of the epothilones produced by
Sorangium cellulosum
strain So ce 90 was described in Hofle et al., 1996, Epothilone A and B-novel 16-membered macrolides with cytotoxic activity: isolation, crystal structure, and conformation in solution, Angew. Chem. Int. Ed. Engl. 35(13/14): 1567-1569, incorporated herein by reference. The strain was found to produce two epothilone compounds, designated A (R═H) and B (R═CH
3
), as shown below, which showed broad cytotoxic activity against eukaryotic cells and noticeable activity and selectivity against breast and colon tumor cell lines.
The desoxy counterparts of epothilones A and B, also known as epothilones C (R═H) and D (R═CH
3
), are known to be less cytotoxic, and the structures of these epothilones are shown below.
Two other naturally occurring epothilones have been described. These are epothilones E and F, in which the methyl side chain of the thiazole moiety of epothilones A and B has been hydroxylated to yield epothilones E and F, respectively.
Because of the potential for use of the epothilones as anticancer agents, and because of the low levels of epothilone produced by the native So ce 90 strain, a number of research teams undertook the effort to synthesize the epothilones. This effort has been successful (see Balog et al., 1996, Total synthesis of (−)-epothilone A, Angew. Chem. Int. Ed. Engl. 35(23/24): 2801-2803; Su et al., 1997, Total synthesis of (−)-epothilone B: an extension of the Suzuki coupling method and insights into structure-activity relationships of the epothilones, Angew. Chem. Int. Ed. Engl. 36(7): 757-759; Meng et al., 1997, Total syntheses of epothilones A and B, JACS 119(42): 10073-10092; and Balog et al., 1998, A novel aldol condensation with 2-methyl-4-pentenal and its application to an improved total synthesis of epothilone B, Angew. Chem. Int. Ed. Engl. 37(19): 2675-2678, each of which is incorporated herein by reference). Despite the success of these efforts, the chemical synthesis of the epothilones is tedious, time-consuming, and expensive. Indeed, the methods have been characterized as impractical for the full-scale pharmaceutical development of an epothilone.
A number of epothilone derivatives, as well as epothilones A-D, have been studied in vitro and in vivo (see Su et al., 1997, Structure-activity relationships of the epothilones and the first in vivo comparison with paclitaxel, Angew. Chem. Int. Ed. Engl. 36(19): 2093-2096; and Chou et al., August 1998, Desoxyepothilone B: an efficacious microtubule-targeted antitumor agent with a promising in vivo profile relative to epothilone B, Proc. Natl. Acad. Sci. USA 95: 9642-9647, each of which is incorporated herein by reference). Additional epothilone derivatives and methods for synthesizing epothilones and epothilone derivatives are described in PCT patent publication Nos. 99/54330, 99/54319, 99/54318, 99/43653, 99/43320, 99/42602, 99/40047, 99/27890, 99/07692, 99/02514, 99/01124,98/25929, 98/22461, 98/08849, and 97/19086; U.S. Pat. No. 5,969,145; and Germany patent publication No. DE 41 38 042, each of which is incorporated herein by reference.
There remains a need for economical means to produce not only the naturally occurring epothilones but also the derivatives or precursors thereof, as well as new epothilone derivatives with improved properties. There remains a need for a host cell that produces epothilones or epothilone derivatives that is easier to manipulate and ferment than the natural producer
Sorangium cellulosum.
The present invention meets these and other needs.
SUMMARY OF THE INVENTION
In one embodiment, the present invention provides recombinant DNA compounds that encode the proteins required to produce epothilones A, B, C, and D. The present invention also provides recombinant DNA compounds that encode portions of these proteins. The present invention also provides recombinant DNA compounds that encode a hybrid protein, which hybrid protein includes all or a portion of a protein involved in epothilone biosynthesis and all or a portion of a protein involved in the biosynthesis of another polyketide or non-ribosomal-derived peptide. In a preferred embodiment, the recombinant DNA compounds of the invention are recombinant DNA cloning vectors that facilitate manipulation of the coding sequences or recombinant DNA expression vectors that code for the expression of one or more of the proteins of the invention in recombinant host cells.
In another embodiment, the present invention provides recombinant host cells that produce a desired epothilone or epothilone derivative. In one embodiment, the invention provides host cells that produce one or more of the epothilones or epothilone derivatives at higher levels than produced in the naturally occurring organisms that produce epothilones. In another embodiment, the invention provides host cells that produce mixtures of epothilones that are less complex than the mixtures produced by naturally occurring host cells. In another embodiment, the present invention provides non-Sorangium recombinant host cells that produce an epothilone or epothilone derivative.
In a preferred embodiment, the host cells of the invention produce less complex mixtures of epothilones than do naturally occurring cells that produce epothilones. Naturally occurring cells that produce epothilones typically produce a mixture of epothilones A, B, C, D, E, and F. The table below summarizes the epothilones produced in different illustrative host cells of the invention.
Cell Type
Epothilones Produced
Epothilones Not Produced
1
A, B, C, D, E, F

2
A, C, E
B, D, F
3
B, D, F
A, C, E
4
A, B, C, D
E, F
5
A, C
B, D, E, F
6
C
A, B, D, E, F
7
B, D
A, C, E, F
8
D
A, B, C, E, F
In addition, cell types may be constructed which produce only the newly discovered epothilones G and H, further discussed below, and one or the other of G and H or both in combination with the downstream epothilones. Thus, it is understood, based on the present invention, that the biosynthetic pathway which relates the naturally occurring epothilones is, respectively, G→C→A→E and H→D→B→F. Appropriate enzymes may also convert members of each pathway to the corresponding member of the other.
Thus, the recombinant host cells of the invention also include host cells that produce only one desired epothilone or epothilone derivative.
In another embodiment, the invention provides Sorangium host cells that have been modified genetically to produce epothilones either at levels greater than those observed in naturally occurring host cells or as less complex mixtures of epothilones than produced by naturally occurring host cells, or produce an epothilone derivative that is not produced in nature. In a preferred embodiment, the host cell produces the epothilones at equal to or greater than 20 mg/L.
In another embodiment, the recombinant host cells of the invention are host cells other than
Sorangium cellulosum
that have been modified genetically to produce an epothilone or an epothilone derivative. In a preferred embodiment, the host cell produces the epothilones at equal to or greater than 20 mg/L. In a more preferred embodiment, the recombinant

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Recombinant methods and materials for producing epothilones... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Recombinant methods and materials for producing epothilones..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recombinant methods and materials for producing epothilones... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2560977

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.