Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...
Patent
1995-05-25
2000-10-17
Fitzgerald, David L.
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Recombinant dna technique included in method of making a...
536 235, 530350, 514 2, 4353201, 435325, 4352523, 43525411, 435 71, 435 721, 435348, C12N 1512, C07K 14715, G01N 3353
Patent
active
061329878
DESCRIPTION:
BRIEF SUMMARY
This invention relates to novel cytokine receptors that mediate the chemotaxis and activation of monocytes, to the DNA sequences encoding the receptors and to processes for obtaining the receptors and producing them by recombinant genetic engineering techniques. The novel receptors appear to arise via alternative splicing of the DNA sequences.
BACKGROUND OF THE INVENTION
A growing family of regulatory proteins that deliver signals between cells of the immune system has been identified. Called cytokines, these proteins have been found to control the growth and development, and bioactivities, of cells of the hematopoietic and immune systems. Cytokines exhibit a wide range of biological activities with target cells from bone marrow, peripheral blood, fetal liver, and other lymphoid or hematopoietic organs. Exemplary members of the family include the colony-stimulating factors (GM-CSF, M-CSF, G-CSF, interleukin-3), the interleukins (IL-1, IL-2, IL-11), the interferons (alpha, beta and gamma), the tumor necrosis factors (alpha and beta) and erythropoietin.
Within this family of proteins, an emerging group of chemotactic cytokines, also called chemokines or intercrines, has been identified. These chemokines are basic, heparin-binding proteins that have proinflammatory and reparative activities. They are distinguished from other cytokines having proinflammatory and reparative activities (such as IL-1 and platelet-derived growth factor) by their characteristic conserved single open reading frames, typical signal sequences in the N-terminal region, AT rich sequences in their C-terminal untranslated regions, and rapidly inducible mRNA expression. See, e.g., Wolpe, FASEB J. 3:2565-73(1989) and Oppenheim, Ann. Rev. Immunol. 9:617-48(1991). Typically, the chemokines range in molecular mass from 8-10 kD; in humans, they are the products of distinct genes clustered on chromosomes 4 and 17. All chemokines have four cysteine residues, forming two disulfide bridges.
Two subfamilies of chemokines have been recognized, based on chromosomal location and the arrangement of the cysteine residues. The human genes for the .alpha., or C-X-C, subfamily members are located on human chromosome 4. In this subfamily the first two cysteines are separated by one amino acid. The members of this subfamily, the human proteins IL-8 (interleukin-8), beta TG (beta thromboglobulin), PF-4 (platelet factor 4), IP-10, GRO (growth stimulating factor, also known as MGSF, melanoma grow stimulating factor) and murine MIP-2 (macrophage inhibitory protein-2), besides having the C-X-C arrangement of their first two cystein residues, exhibit homology in their amino acid sequences in the range of 30-50%.
In the beta subfamily, the first two cysteine residues are located adjacent to each other, a C-C arrangement. The human genes encoding the .beta. subfamily proteins are located on chromosome 17 (their mouse counterparts are clustered on mouse chromosome 11 which is the counterpart of human chromosome 17). Homology in the beta subfamily ranges from 28-45% intraspecies, from 25-55% interspecies. Exemplary members include the human proteins MCP-1 (monocyte chemoattractant protein-1), LD-78 .alpha. and .beta., ACT-2 and RANTES and the murine proteins JE factor (the murine homologue of MCP-1), MIP-1.alpha. and .beta. (macrophage inhibitory protein-1) and TCA-3. Human MCP-1 and murine JE factor exert several effects specifically on monocytes. Both proteins are potent chemoattractants for human monocytes in vitro and can stimulate an increase in cytosolic free calcium and the respiratory burst in monocytes. MCP-1 has been reported to activate monocyte-mediated tumoristatic activity, as well as to induce tumoricidal activity. See, e.g., Rollins, Mol. and Cell. Biol. 11:3125-31(1991) and Walter, Int. J. Cancer 49:431-35(1991). MCP-1 has been implicated as an important factor in mediating monocytic infiltration of tissues inflammatory processes such as rheumatoid arthritis and alveolitis. See, e.g., Koch, J. Clin. Invest. 90:772-79(1992) and Jones, J. Immunol. 149
REFERENCES:
patent: 5459128 (1995-10-01), Rollins et al.
patent: 5460955 (1995-10-01), Mosher et al.
patent: 5547854 (1996-08-01), Donahoe et al.
patent: 5707815 (1998-01-01), Charo et al.
Ansubel, F.M., Current Protocols in Molecular Biology, Wiley & Sons, New York 1:22-32, pp. 6.11.11-6.11.16 (1994).
Yamagami, S. et al., cDNA cloning and functional expression of a human monocyte chemoattractant protein 1 receptor, Biochem. Biophys. Res. Comm., vol. 202, 2:1156-1162 (Jul. 29, 1994).
Yla-Herttuala et al., "Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions" (1991) Proc. Natl. Acad. Sci. 88:5252-5256.
Cushing et al., "Minimally modified low density lipoprotein induces monocyte chemotatcic protein 1 in human endothelial cells and smooth muscle celss" (1990) Proc. Natl. Acad. Sci. 87:5134-5138.
Holmes et al., "Structure and Functional Expression of a Human Interleukin-8 Receptor" (1991) Science 253:1278-1280.
Murphy, P.M. and Tiffany, H.L., "Cloning of Complementary DNA Encoding a Functional Human Interleukin-8 Receptor" (1991) Science 253:1280-1283.
Gao, et al., "Structure and Functional Expression of the Human Macrophage Inflammatory Protein 1.alpha./RANTES Receptor" (1993) The Journal of Experimental Medicine 177:1421-1427.
Neote, et al., "Molecular Cloning, Functional Expression, and Signaling Characteristics of a C-C Chemokine Receptor" (1993) Cell 72:415-425.
Edgington, S.M., "Chemokines In Cardiovascular Disease" (1993) Bio/Technology 11:676-681.
Yoshimura, et al., "Purification and Amino Acid Analysis of Two Human Glioma-Derived Monocyte Chemoattractants" (1989) The Journal of Experimental Medicine 169:1449-1459.
Furutani, et al., "Cloning and Sequencing of the c DNA For Human Monocyte Chemotactic and Activating Factor (MCAF)" (1989) Biochemical and Biophysical Research Communications 159(1):249-255.
Faggiotto, et al., "Studies of Hypercholesterolemia in the Nonhuman Primate--I. Changes that Lead to Fatty Streak Formation" (1984) Arteriosclerosis 4(4):323-340.
Watson, S. et al., eds. The G-Protein Linked Receptor--Facts Book, London, Academic Press (1994) Introduction, pp. 2-6.
Gearing, David P. et al., "Expression Cloning of a Receptor for Human Granulocyte-Macrophage Colony-Stimulating Factor" (1989) 8(12)3667-3676.
Van Riper et al., "Characterization and Species Distribution of HIgh Affinity GTP-coupled Receptors for Human Rantes and Monocyte Chemoattractant Protein 1" (1993) J. Exp. Med. 177:851-856.
Wang et al., "Identification of RANTES Receptors on Human Monocytic Cells: Competition for Binding and Desensitization by Homologous Chemotactic Cytokines" (1993) The Journal of Experimental Medicine 177:699-705.
Wolpe, S.D. and Cerami, A., "Macrophage inflammatory proteins 1 and 2: members of a novel superfamily of cytokines" (1989) The FASEB Journal 3:2565-2573.
Oppenheim et al., "Properties of Genes and Gene Products of the Intercrine Family" (1991) Annual Review of Immunology 9:620-648.
Rollins, B.J. and Sunday, M.E., "Suppression of Tumor Formation In Vivo by Expression of the JE Gene in Malignant Cells" (1991) Molecular and Cellular Biology 11(6):3125-3131.
Walter et al., "Macrophage Infiltration and Growth of Sarcoma Clones Expressing Different Amounts of Monocyte Chemotactic Protein/JE" (1991) Int. J. Cancer 49:431-435.
Koch et al., "Enhanced Production of Monocyte Chemoattractant Protein-1 in Rheumatoid Arthritis" (1992) The Journal of Clinical Investigation, Inc. 90:772-779.
Jones et al., "Potential Role of Monocyte Chemoattractant Protein 1/JE in Monocyte/Macrophage-Dependent IgA Immune Complex Alveolitis in the Rat" (1992) The Journal of Immunology 149:2147-2154.
Nelken et al., "Monocyte Chemoattractant Protein-1 in Human Atheromatous Plaques" (1991) J. Clin. Invest. 88:1121-1127.
Charo et al Proc. Nat'l. Acad. Sci USA vol. 91 pp. 2752-2756 (1994).
Beall, C. J., et al. (1992) J. Biol. Chem. 267:3455-59.
Charo Israel F.
Coughlin Shaun R.
Fitzgerald David L.
The Regents of the University of California
LandOfFree
Recombinant mammalian monocyte chemotactic protein-1 (MCP-1) rec does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Recombinant mammalian monocyte chemotactic protein-1 (MCP-1) rec, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recombinant mammalian monocyte chemotactic protein-1 (MCP-1) rec will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-467164