Recombinant hexose oxidase, a method of producing same and...

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S069700, C435S252300, C435S190000, C435S320100, C426S019000, C536S023200, C536S023400

Reexamination Certificate

active

06251626

ABSTRACT:

FIELD OF INVENTION
The invention provides a method of producing hexose oxidase by recombinant DNA technology and such enzyme produced by the method and its use in the food industry and other fields.
TECHNICAL BACKGROUND AND PRIOR ART
Hexose oxidase (D-hexose:O
2
-oxidoreductase, EC 1.1.3.5) is an enzyme which in the presence of oxygen is capable of oxidizing D-glucose and several other reducing sugars including maltose, lactose and cellobiose to their corresponding lactones with subsequent hydrolysis to the respective aldobionic acids. Accordingly, hexose oxidase differ from another oxido-reductase, glucose oxidase which can only convert D-glucose in that this enzyme can utilize a broader range of sugar substrates. The oxidation catalyzed by hexose oxidase can e.g. be illustrated as follows:
D-Glucose+O
2
→&dgr;-D-gluconolactone+H
2
O
2
, or
D-Galactose+O
2
→&ggr;-D-galactogalactone+H
2
O
2
Up till now, hexose oxidase (in the following also referred to as HOX) has been provided by isolating the enzyme from several red algal species such as
Iridophycus flaccidum
(Bean and Hassid, 1956) and
Chondrus crispus
(Sullivan et al. 1973). Additionally, the algal species
Euthora cristata
has been shown to produce hexose oxidase.
It has been reported that hexose oxidase isolated from these natural sources may be of potential use in the manufacturing of certain food products. Thus, hexose oxidase isolated from
Iridophycus flaccidum
has been shown to be capable of converting lactose in milk with the production of the corresponding aldobionic acid and has been shown to be of potential interest as an acidifying agent in milk, e.g. to replace acidifying microbial cultures for that purpose (Rand, 1972). In that respect, hexose oxidase has been mentioned as a more interesting enzyme than glucose oxidase, since this latter enzyme can only be utilized in milk or food products not containing glucose with the concomitant addition of glucose or, in the case of a milk product, the lactose-degrading enzyme lactase, whereby the lactose is degraded to glucose and galactose. Even if glucose in this manner will become available as a substrate for the glucose oxidase,. it is obvious that only 50% of the end products of lactase can be utilized as substrate by the glucose oxidase, and accordingly glucose oxidase is not an efficient acidifying agent in natural milk or dairy products.
The capability of oxygen oxidoreductases including that of hexose oxidase to generate hydrogen peroxide, which has an antimicrobial effect, has been utilized to improve the storage stability of certain food products including cheese, butter and fruit juice as it is disclosed in JP-B-73/016612. It has also been suggested that oxidoreductases may be potentially useful as oxygen scavengers or antioxidants in food products.
Within the bakery and milling industries it is known to use oxidizing agents such as e.g. iodates, peroxides, ascorbic acid, K-bromate or azodicarbonamide for improving the baking performance of flour to achieve a dough with improved stretchability and thus having a desirable strength and stability. The mechanism behind this effect of oxidizing agents is that the flour proteins, such as e.g. gluten in wheat flour contains thiol groups which, when they become oxidized, form disulphide bonds whereby the protein forms a more stable matrix resulting in a better dough quality and improvements of the volume and crumb structure of the baked products.
However, such use of several of the currently available oxidizing agents are objected to by consumers or is not permitted by regulatory bodies and accordingly, it has been attempted to find alternatives to these conventional flour and dough additives and the prior art has suggested the use of glucose oxidase for the above purpose. Thus, U.S. Pat. No. 2,783,150 discloses the addition of glucose oxidase to flour to improve the Theological characteristics of dough. CA 2,012,723 discloses bread improving agents comprising cellulolytic enzymes and glucose oxidase and JP-A-084848 suggests the use of a bread improving composition comprising glucose oxidase and lipase.
However, the use of glucose oxidase as a dough and bread improving additive has the limitation that this enzyme requires the presence of glucose as substrate in order to be effective in a dough system and generally, the glucose content in cereal flours is low. Thus, in wheat flour glucose is present in an amount which is in the range of 0-0.4% w/w, i.e. flours may not contain any glucose at all. Therefore, the absence or low content of glucose in doughs will be a limiting factor for the use of glucose oxidase as a dough improving agent. In contrast, the content of maltose is significantly higher already in the freshly prepared dough and further maltose is formed in the dough due to the activity of &bgr;-amylase either being inherently present in the flour or being added.
The current source of hexose oxidase is crude or partially purified enzyme preparations isolated by extraction from the above natively occurring marine algal species. However, since the amount of hexose oxidase in algae is low, it is evident that a production of the enzyme in this manner is too tedious and costly to warrant a cost effective commercial production of the enzyme from these natural sources. Furthermore, the provision of a sufficiently pure enzyme product at a cost effective level is not readily achievable in this manner.
A considerable industrial need therefore exists to provide an alternative and more cost effective source of this industrially valuable enzyme without being dependent on a natural source and also to provide the enzyme in a pure form, i.e. without any contaminating enzyme activities or any other undesirable contaminating substances including undesirable algal pigments and environmental pollutants which may be present in the marine areas where the hexose oxidase-producing algal species grow.
Furthermore, the industrial availability of a food grade quality of hexose oxidase in sufficient amounts and at cost effective prices will undoubtedly open up for new applications of that enzyme not only in the food industry, but also in other industrial areas as it will be discussed in the following. One example of such a novel application of the recombinant hexose oxidase in the food industry is the use hereof as a dough improving agent, another example being the use of hexose oxidase active polypeptide or a recombinant organism producing the polypeptide in the manufacturing of lactones.
SUMMARY OF THE INVENTION
The present invention has, by using recombinant DNA technology, for the first time made it possible to provide hexose oxidase active polypeptides in industrially appropriate quantities and at a quality and purity level which renders the hexose oxidase active polypeptide according to the invention highly suitable for any relevant industrial purpose including the manufacturing of food products and pharmaceuticals.
Accordingly, the invention pertains in a first aspect to a method of producing a polypeptide having hexose oxidase activity, comprising isolating or synthesizing a DNA fragment encoding the polypeptide, introducing said DNA fragment into an appropriate host organism in which the DNA fragment is combined with an appropriate expression signal for the DNA fragment, cultivating the host organism under conditions leading to expression of the hexose oxidase active polypeptide and recovering the polypeptide from the cultivation medium or from the host organism.
In a further aspect, the invention relates to a polypeptide in isolated form having hexose oxidase activity, comprising at least one amino acid sequence selected from the group consisting of
(i) Tyr-Glu-Pro-Tyr-Gly-Gly-Val-Pro (SEQ ID NO:1),
(ii) Ala-Ile-Ile-Asn-Val-Thr-Gly-Leu-Val-Glu-Ser-Gly-Tyr-Asp-X-X-X-Gly-Tyr-X-Val-Ser-Ser (SEQ ID NO:2),
(iii) Asp-Leu-Pro-Met-Ser-Pro-Arg-Gly-Val-Ile-Ala-Ser-Asn-Leu-X-Phe (SEQ ID NO:3),
(iv) Asp-Ser-Glu-Gly-Asn-Asp-Gly-Glu-Leu-Phe-X-Ala-His-Thr (SEQ ID NO:4),
(v) Tyr-Tyr-Phe-Lys (SEQ ID NO:5),

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Recombinant hexose oxidase, a method of producing same and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Recombinant hexose oxidase, a method of producing same and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recombinant hexose oxidase, a method of producing same and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2470446

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.