Recombinant hair treatment compositions

Drug – bio-affecting and body treating compositions – Live hair or scalp treating compositions – Polymer containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S002600, C514S04400A, C424S401000, C424S070100, C424S078020, C424S070110, C435S320100, C435S325000, C435S455000, C435S069100

Reexamination Certificate

active

06572845

ABSTRACT:

BACKGROUND OF THE INVENTION
Human hair varies much in length, thickness and color in different individuals and among different races of mankind. A hair consists of a root, which is the part implanted in the skin, and a shaft, which is the portion projecting from the surface. The shaft of the hair consists, from within outward, of three parts: the medulla, the cortex and the cuticle. Each layer is multicellular in nature. The medulla, usually more narrow in fine hairs, is composed of rows of polyhedral cells. The cortex constitutes the chief part of the hair shaft; its cells are elongated and united to form flat, tapered fibers that contain pigment granules in dark hair and air in white hair. The cuticle consists of a single layer of flat scales that overlap one another. Exposure of the hair to sun, wind, and modern hair styling products and techniques, (e.g., shampooing, bleaching, dyeing, tinting, and shaping of hair with wave preparations), imparts significant and unwanted damage to the cuticle and cortex of the hair shaft. As damage to certain proteins present in hair accumulates, a loss in body, luster, and smooth texture results. Such damage is also reflected in poor wet and dry compatibility, increased electrostatic charging, reduced maximum tensile strength, breaking of the hair and in the poor appearance of hair styles.
The structural component of hair consists of a side by side overlapping array of intermediate filaments classified as tough and durable protein fibers present in the cytoplasm of cells that are subject to mechanical stress. Intermediate filament proteins consist of a large superfamily of proteins that share a common structural organization. These proteins contain a thin a-helical rod domain with non-helical ends, which assemble through a dimeric coiled-coil. The dimers form higher order oligomer subunits which twist and pack together to form microscopic ropes that are woven together in different ways to form a network in the cytoplasm of the cell. This network functions to connect cells to each other and is a major structural component of epithelial tissues. In humans, at least three-quarters of all intermediate filament proteins are keratins (Lane et al.,
Curr. Op, in Genet. Dev., V.
4, pp 412-418, 1994).
Keratins are the most complex group of intermediate filament proteins. There are at least 30 keratin proteins which can be further divided into hard keratins, (hair and nail keratins), and soft keratins, (epidermal keratins) (Yu et al.,
The Journal of Investigative Dermatology,
V. 101, NO. 1, Supplement, July, 1993; and Fuchs, Ann. Rev. Biochem., V. 63, pp. 345-382, 1994). Human hair keratin proteins may be distinguished from their epidermal counterparts by a relatively higher cysteine content that reflects utilization of disulfide bonds in producing a tougher, more durable structure (Yu et al., supra). All keratins can be further divided into acidic type I keratins and basic type II keratin proteins which heterodimerize to form the higher order structure common to intermediate filaments (Fuchs et al., supra). At present, there are seven known type I hair keratins (hHa1, hHa2, hHa3-I, hHa3-II, hHa4, hHa5, and hHRa1 Hair acidic keratins) (Winter et al.
Nature Genetics,
V. 16, August, pp. 372-374, 1997) and four known type II hair keratins (hHb1, hHb3, hHb5, and hHb6 Hair basic keratins) (Rogers et al.,
Differentiation,
V. 61, pp. 187-194, 1997). Together with the so called minor hair keratin pairs, Hax/Hbx, the hair keratin family comprises 13 members. Keratins are expressed in the cortex of the hair shaft, (e.g., Hb1), and in the cuticle (e.g., Hal and two isoforms of Ha3) (Winter et al.,
The Journal of Investigative Dermatology,
V. 106, NO. 3, March, pp. 544-548, 1996).
There is an astounding heterogeneity in epithelial keratin proteins expressed in different individuals. This heterogeneity results from a polymorphism of the respective epithelial keratin genes (Mischke et al.,
The Journal of Investigative Dermatology,
V. 88, No. 2, February, pp. 191-197, 1987; Lane et al., supra). Furthermore, subtle allelic variation can result in gross phenotypic defects in epithelial tissue (Lane et al., supra; Winter et al., supra; Fuchs et al., supra). For example, transgenic mice expressing mutated human epidermal keratin genes exhibit a disturbed keratin network along with tissue abnormalities resembling the autosomal dominant human skin diseases, epidermolysis bullosa simplex or epidermolytic hyperkeratosis (Winter et al., supra). Without the proper intermediate filament network, epidermal cells become fragile and prone to breakage upon mechanical stress, resulting in skin blistering.
Given the heterogeneity of epidermal keratins and the effect of this heterogeneity on the appearance of the skin, it was not surprising that polymorphisms were also found to be associated with hair keratin proteins. In one example, two polymorphic loci in the cuticular hHa2 gene, were identified and shown to be inherited as Mendelian traits (Winter et al., 1997 supra). Heterogeneity in keratin proteins can have direct effects on the tensile strength, flexibility, and dynamics of the intermediate filaments, which means that even subtle heterogeneity in intermediate filament proteins can influence the external features of the hair or skin.
The use of protein materials in the formulation of modern hair care products to provide shine, strength, softness, smoothness, and good combing properties is well known. Keratin, in particular is often utilized. Because the naturally-occurring keratin is always cross-linked and cross-linked fibers are insoluble (i.e., insoluble in water), the keratin is first rendered soluble using a variety of chemical and enzymatic methods which hydrolyze the protein (U.S. Pat. No. 4,439,417; U.S. Pat. No. 4,542,014; U.S. Pat. No. 5,612,024; U.S. Pat. No. 4,465,664; U.S. Pat. No. 4,906,460; U.S. Pat. No. 3,842,848; U.S. Pat. No. 4,495,173). The starting materials can include, for example, animal hair, human hair, feather, claw, horn, hoof and scale, among which wool and feather are preferably used.
Since the keratin proteins are from a variety of natural sources they do not reflect any particular desirable hair keratin composition and since the keratin protein is hydrolyzed to its constituent amino acids, it does not maintain the structure of the keratin protein, but is merely a simple mixture of amino acids which is added to the hair treatment composition. A better hair treatment product would avoid the use of cross-linked keratins and would preferably even provide a mechanism for tailoring the product composition to the needs or desires of particular individuals.
SUMMARY OF THE INVENTION
The present invention pertains to a hair treatment or beauty composition including a non-naturally-occurring intermediate filament protein formulated as a hair treatment composition. The intermediate filament proteins are preferably of human origin and have not been previously cross-linked. The protein is most preferably selected from the group consisting of human hair keratins. The keratin protein may include at least one additional non-naturally occurring amino acid sequence moiety, the amino acid sequence moiety preferably being selected from the group consisting of a hydrophobic sequence, a hydrophilic sequence, and a cysteine-rich sequence.
In preferred embodiments of the present invention, the hair treatment composition is formulated to reproduce one or more aspects of the keratin proteins found in the hair of a selected individual. In particular, one aspect of the present invention involves the recognition that different individuals may produce different allelic variants, or populations of allelic variants of keratin proteins in their skin. As used herein, the term “allelic variants” refers to different versions of a protein, or a gene encoding that protein, present in the human population. Protein variants can differ from one another by addition, substitution, or deletion of one or more amino acids. Typically, such proteins are produced from gene variant

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Recombinant hair treatment compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Recombinant hair treatment compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recombinant hair treatment compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3103338

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.