Recombinant expression vector of human parathyroid hormone

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023500, C536S023100, C536S023400, C536S024100, C536S024200, C435S069100, C435S320100, C435S035000, C435S252330, C435S069400

Reexamination Certificate

active

06500647

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a recombinant expression vector using phosphoribulokinase as a fusion partner and a process for preparing human parathyroid hormone therewith, more specifically, to a recombinant expression vector which is prepared by inserting a human parathyroid hormone gene containing an urokinase-specific cleavage site into a L-arabinose inducible vector containing a phosphoribulokinase gene fragment of
Rhodobacter sphaeroides
or its mutated gene- as a fusion partner, a recombinant microorganism transformed with the said expression vector, and a process for preparing human parathyroid hormone on a large scale by cultivating the said microorganism in a medium containing L-arabinose.
2. Description of the Prior Art
Osteoporosis is a disease causing harmful effects such as fracture even by small impact which results from reduction in mass of bone compared with normal people and weakness of bone tissue. The advance of medical science and biology leads to continuous increase in population of old age, which results in continuous increase of patients suffering from osteoporosis. Therefore, osteoporosis becomes a big social problem at present when number of old people living alone increases gradually according to a tendency of a nuclear family.
In general, in a normal bone tissue, balance between activities of osteoclast, a bone-destructing cell and osteoblast, a bone-forming cell is accomplished, which results in constant remodeling of bone tissue. In a normal body, osteoclast surpasses osteoblast in functioning according to increase in age, which results in overall decrease in bone density. In a patient suffering from osteoporosis, such a disruption in balance between activities of osteoclast and osteoblast is much higher than in normal case.
Although the cause of disruption in balance between activities of osteoclast and osteoblast has not been known clearly, it has been found that reduction in secretion of estrogen, a female hormone after the menopause causes osteoporosis type 1 which suffers women after the menopause largely. Thus, estrogen has been administered for the treatment of osteoporosis type 1, and many patients are, however, reluctant to use estrogen because of side effects such as high probability of attack of breast cancer, endometrium cancer, etc. Also, estrogen cannot be used for the treatment of osteoporosis type 2 which has been known to be induced by a cause different from that inducing osteoporosis type 1.
Calcitonin which inhibits activities of osteoclast to suppress resorption of bone tissue has been used as an agent which compensates for shortcomings of estrogen, an agent for the treatment of osteoporosis type 1 and treats osteoporosis type 2 not to be cured by estrogen. However, estrogen and calcitonin have no effect on increase in mass of bone which is already lost and only prevent further decrease in bone density. Therefore, they are improper for the effective treatment of osteoporosis.
Recently, parathyroid hormone (PTH) has been noticed as a good agent for the treatment of osteoporosis since PTH has an effect of increasing bone density as well as an effect of preventing reduction in bone density and its side effects have not been reported. Preproparathyroid hormone (preproPTH) which consists of 115 amino acids and is produced in main cells of parathyroid gland is processed and transformed into proPTH consisting of 92 amino acids while traveling through endoplasmic reticulum. Then, proPTH is further processed and transformed into mature PTH consisting of 84 amino acids while traveling through Golgi apparatus. PTH synthesized by the said processes is secreted into blood and transported to target organs, i.e., bone and kidney. Secreted PTH has a half-life of only 18 minutes.
PTH activates Ca
2+
pump in bone cell membrane to promote CaHPO
4
mobilization from bone which results in increase in blood Ca
2+
level within several minutes. Moreover, when PTH is secreted continuously, it activates osteoclasts already existed, stimulates formation of new osteoclasts, and inhibits activities of osteoblasts temporarily, which results in inhibition of Ca
2+
deposition into bone and stimulation of Ca
2+
release to increase secretion of Ca
2+
and PO
4
3−
into blood. On the other hand, secretion of PTH is regulated by blood Ca
2+
concentration through strong feedback mechanism. That is, 10% reduction-of blood Ca
2+
concentration in a short time doubles secretion of PTH. When blood Ca
2+
concentration is low for a long time, even 1% reduction of blood Ca
2+
. concentration doubles secretion of PTH.
Unlike such a regulatory function of PTH in a living body, it has been reported that PTH stimulates formation of bone when external PTH is administered in a small dose intermittently (see: Tam, C. S. et al., Endocrinology, 110:506-512(1982)). The use of PTH for the treatment of osteoporosis is based on the said stimulatory function of PTH in formation of bone. Although the mechanism of stimulatory function of PTH in formation of bone has not been clearly understood, hypotheses such as inhibition of PTH secretion by the administered PTH, direct stimulation of osteoblasts and indirect stimulation of formation of bone through growth factor including insulin-like growth factor-1 (IGF-1) and transforming growth factor-&bgr; (TGF-&bgr;) have been suggested.
In order to treat osteoporosis by using PTH, administration of PTH for a long time is essentially required. However, processes for mass production of PTH have not been established so far, and practical application of PTH for the treatment of osteoporosis has been in a difficult situation. Thus, the present inventors have studied mass production of PTH from a recombinant microorganism employing genetic engineering technology and made an effort to remove amino-terminal methionine residue during expression of PTH in
E. coli
since Ser-Val-Ser amino acid sequence at amino-terminus of PTH has been reported to be essential for biological activity of PTH.
Methionine-specific amino peptidase, an enzyme removing translation-initiating methionine at amino-terminus of expressed proteins exists in
E. coli
which is widely used as a host cell for expression of a recombinant protein. However, when foreign proteins are expressed in large quantities in
E. coli
, removal of amino-terminal methionine is not achieved occasionally. Such a phenomenon has to be solved to construct an expression system of a protein whose amino acid sequence at amino-terminus affects its own biological activity, e.g., PTH.
In order to solve the said problem, three methods may be used mainly as followings: First, a desired protein is secreted into periplasm of
E. coli
or cultured medium in an amino-terminus processed form by expressing the desired protein in a fused form with secretion signal sequence at amino-terminus. The said method has an advantage that a mature protein is obtained by intracellular activity, while it has a shortcoming that yield of expression is relatively low. Secondly, after only a desired protein is expressed in
E. coli
and isolated from
E. coli
in a methionine-attached form at amino-terminus, it is digested with amino peptidase to obtain a mature protein. The said method has a shortcoming that purification of the protein is complex since separation of amino-terminal methionine-removed proteins from methionine-attached proteins is difficult. Thirdly, after a fusion protein where a desired protein is fused with another protein is expressed in
E. coli
and isolated, the fused partner is removed from the fusion protein employing an enzyme or a chemical agent to obtain a mature desired protein. The said method has an advantage of high efficiency of expression of a desired protein as well as production of an amino-terminal methionine-free protein.
On the other hand, methods for obtaining a desired protein from a fusion protein are largely classified into cleaving methods employing chemicals and enzymes. Among

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Recombinant expression vector of human parathyroid hormone does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Recombinant expression vector of human parathyroid hormone, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recombinant expression vector of human parathyroid hormone will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2993311

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.