Reciprocating pumps with linear motor driver

Pumps – Processes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C417S410100, C417S416000

Reexamination Certificate

active

06283720

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
BACKGROUND OF THE INVENTION
The present invention relates to reciprocating pumps, and in particular to various types of reciprocating pumps with a linear motor driver and to methods of pumping liquids with such reciprocating pump. Most preferably the pumps of this invention are hermetic reciprocating pumps and the methods of this invention are methods of pumping liquids with such hermetic pumps.
Reciprocating pumps are highly desirable for use in numerous applications, particularly in environments where liquid flow rate is low (e.g., less than 15 gpm) and the required liquid pressure rise is high (e.g., greater than 500 psi). For applications requiring less pressure rise and greater flow rate, single stage centrifugal pumps are favored because of their simplicity, low cost and low maintenance requirements. However, reciprocating pumps have a higher thermodynamic efficiency than centrifugal pumps by as much as 10% to 30%. Although reciprocating pumps are preferred for many applications, they are subject to certain drawbacks and limitations.
For example, traditional reciprocating pumps are commonly driven in a linear direction by a rotating drive mechanism through a slider-crank mechanism or other conventional mechanical mechanism for converting rotary motion to linear motion. These drive systems require multiple bearings, grease or oil lubrication, rotational speed reduction by belts or gears from the driver, flywheels for stabilization of speed, protective safety guards and other mechanical devices, all of which add complexity and cost to the pumps. Moreover, in these traditional constructions the stroke length of the piston is fixed, as is the motion of the piston over time (e.g., generally sinusoidal motion) during each cycle of operation. This results in a peak piston velocity near mid-stroke, which determines the peak Bernoulli effect pressure reduction and kinetic head loss pressure reduction in the fluid that enters the pump on the suction stroke of the piston, thereby effecting the net positive suction head (NPSH) requirement.
Pumps are subject to mechanical damage from insufficient NPSH. In particular, vaporization of liquid at the point of entry into the pump results in vapor bubble formation. Subsequent compression of the vaporized liquid causes violent collapse of the bubbles, resulting in the formation of sonic shock waves that ultimately can damage pump components. Therefore, it is important that the available NPSH of a pump installation be sufficiently above the required NPSH of the pump.
Pump designs requiring a low NPSH allow greater flexibility in installation, often reducing installation costs. In addition, a lower required NPSH assures a greater margin to cavitation and hence greater reliability in operation when inlet operating conditions are off-specification.
The NPSH requirement for reciprocating pumps is dictated by factors tending to reduce the local entry suction pressure, such as liquid line acceleration pressure drop and velocity induced pressure drop (Bernoulli effect and kinetic head losses) in the inlet line and inlet valve. The cylinder and piston size, as well as the inlet valve size and peak piston velocity are critical factors in setting the minimum required NPSH. In particular, larger cylinder, piston and inlet valve size allow a slower pump speed. This results in a lower NPSH requirement. As stated earlier, pump designs requiring a low NPSH allow greater flexibility in installation and also a greater margin to cavitation, both highly desirable attributes.
Adjustment of the speed of traditional reciprocating pumps to reduce the throughput (i. e., flow turndown) is limited largely by the size of the pump flywheel and the size of the electric motor driver. Traditional reciprocating pumps are typically operated at a fixed motor supply power alternating current (AC) frequency and thus a fixed nominal pump speed. Adjustment of the alternating current electrical supply frequency to the motor, such as by the use of a variable frequency drive, to reduce pump speed is typically limited in turndown to 50% of full design pump speed and flow rate. The function of the pump flywheel is to minimize speed fluctuation or ripple during each stroke cycle of the pump. This is accomplished by absorbing and releasing kinetic energy between the pump shaft and the flywheel during each cycle; resulting in a cyclic speed fluctuation of the pump slightly above and below the nominal speed. This is called speed ripple. Speed ripple results in greater and lesser amounts of motor torque at various portions of each pump stroke cycle. This fluctuating torque creates fluctuating motor current draw, which in the extreme can be detrimental to the motor by thermal overheating. The key factor in determining peak motor current draw is the percentage of speed fluctuation. It should be noted that for a given flywheel size and motor size, the speed ripple percentage increases by the square of the ratio of design speed to reduced speed. Additionally, as motor speed decreases, the ability of the motor fan to properly cool the motor decreases as well. These factors combine to create the practical 50% turndown limit. Special measures can be taken to reduce this limit, such as providing a separately powered motor cooling fan, significantly over sizing the pump motor frame or over sizing the pump flywheel. However, these special measures are expensive alternatives. Other means to achieve reduced pump speed, such as variable sheaf diameter belt systems or other mechanical speed ratio adjustment methods, suffer from problems of increased wear, slippage and excessive peak load failures.
When a greater operational flow turndown is required, traditional pumps generally are operated in a recycle mode or in a cyclic on/off mode with a hold up tank. Recycle flow around the pump can be extremely wasteful in pump power and adds cost and complication by requiring a recycle line, a recycle valve, a cooler and means for control. The use of a hold up tank also increases the expense of the system, requires significant excess space and complicates operation and maintenance of the pump system.
A further deficiency associated with traditional reciprocating pumps resides in the need to provide an effective seal between the piston and the pump cylinder. Such a seal typically is provided by piston ring dynamic seals. However, even with the provision of such seals, some leakage is typically encountered, and in many applications represents a nuisance for disposing or recycling of the leaked material.
In traditional reciprocating pumps, piston ring wear is often the primary cause of pump repair maintenance. This results, in part, from sealing the full differential pressure between the pump discharge pressure and the piston backside leakage collection pressure, thereby causing these seals to wear quickly. Specifically, the backside pressure often is equal to or less than the pump inlet pressure, thereby creating a very significant pressure drop across the piston ring seals. This, in turn, increases the resulting piston ring wear rate.
Inlet and outlet valves on a reciprocating pump are typically fluid-activated check valves of specialty design to accommodate the high cyclic rate of the pump while achieving the longest possible operating life. Still, even with the specialty design of these valves, valve failure is often the reason for a pump malfunction. The design speed of the reciprocating pump is based on the required volumetric flow rate and the swept volume of the piston in the pump cylinder. Because a larger swept volume operating at a slower speed requires a larger physical pump size and a higher capital cost, it has been the practice to install a small pump operating at the highest speed permissible, as limited by reciprocating forces, piston ring wear rates and NPSH requirements. Such high speeds, typically in the range of 200 to 600 rpm, place a heavy burden on valve life.
It is desired to have a reciprocating pump that does

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reciprocating pumps with linear motor driver does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reciprocating pumps with linear motor driver, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reciprocating pumps with linear motor driver will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2449205

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.