Reciprocating internal combustion engine

Internal-combustion engines – Four-cycle – Variable clearance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S0780AA

Reexamination Certificate

active

06390035

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a reciprocating internal combustion engine suitable for automotive vehicles, and particularly to the improvements of an internal combustion engine having reciprocating pistons, each connected to an engine crankshaft via a linkage.
BACKGROUND ART
In typical reciprocating internal combustion engines, a crank pin of a crankshaft is connected to a piston pin of a piston usually by means of a single link known as a “connecting rod”. The internal combustion engine having reciprocating pistons each connected to the crankshaft via the single link (connecting rod) will be hereinafter referred to as a “single-link type reciprocating piston engine”. In the single-link type reciprocating engines, the length of the connecting rod is finite, and therefore higher-order vibration (oscillation) components except a first-order vibration component are involved in a vibrating system of reciprocating motion of the piston, synchronizing rotary motion of the crankshaft. In order to vary a compression ratio between the volume in the engine cylinder with the piston at bottom dead center (BDC) and the volume with the piston at top dead center (TDC) depending upon engine operating conditions such as engine speed, in recent years, there have been proposed multiple-link type reciprocating engines. One such multiple-link type reciprocating engine has been disclosed in Japanese Patent Provisional Publication No. 9-228858.
SUMMARY OF THE INVENTION
Referring to
FIG. 9
, there are shown variations in the piston acceleration (indicated by the heavy solid line in
FIG. 9
) and fluctuations in each of piston accelerations having different orders, that is, the amplitude of each of 1st-order, 2nd-order, 3rd-order, and 4th-order vibration components, in a single-link type reciprocating piston engine. In
FIG. 9
, the thin solid line indicates the change in the first-order piston acceleration corresponding to the first-order vibration component of the vibrating system of reciprocating motion of the piston, synchronizing rotary motion of the crankshaft. The broken line shown in
FIG. 9
indicates the change in the second-order piston acceleration corresponding to the second-order vibration component of the vibrating system of reciprocating motion of the piston. The one-dotted line shown in
FIG. 9
indicates the change in the third-order piston acceleration corresponding to the third-order vibration component of the vibrating system of reciprocating motion of the piston, whereas the two-dotted line shown in
FIG. 9
indicates the change in the fourth-order piston acceleration corresponding to the fourth-order vibration component of the vibrating system of reciprocating motion of the piston. As can be seen from the graph shown in
FIG. 9
, in the single-link type reciprocating piston engine, in addition to the first-order piston-acceleration component (see the thin solid line of the characteristic curve shown in FIG.
9
), the second-order piston-acceleration component (see the broken line of the characteristic curve shown in
FIG. 9
) is involved in the vibrating system of reciprocating motion of the piston. As clearly seen from the characteristic curves shown in
FIG. 9
, the amplitude of the second-order piston-acceleration component is relatively large in comparison with the third-order and fourth-order piston-acceleration components. Actually, the amplitude of the second-order piston-acceleration component is about one third the first-order piston-acceleration component. For the reasons set forth above, in the single-link type reciprocating engine, a vibrating force, occurring mainly owing to the first-order and second-order vibration components, acts on the engine, in particular the engine block. By providing counter weights or balance weights, each located opposite to its adjacent crank pin of the crankshaft, it is possible to effectively reduce or suppress the first-order vibration occurring due to the first-order vibration component of the vibrating system of reciprocating piston, synchronizing rotary motion of the crankshaft. In multiple cylinder engines, by way of contriving of the layout of cylinders, it is possible to satisfactorily suppress the first-order vibration. In comparison with the first-order vibration, it is difficult to sufficiently suppress the second-order vibration occurring due to the second-order vibration component of the vibrating system of reciprocating piston, synchronizing rotary motion of the crankshaft, by way of only the layout of cylinders. Generally, booming noise occurring in the vehicle compartment is caused by such second-order vibrations. The longer the length of the connecting rod, the smaller the amplitudes of the first-order and higher-order vibration components and, hence, the vibrating system of reciprocating motion of the piston can approach to a simple harmonic vibration that vibration at a point in a system is simple harmonic when the displacement with respect to time is described by a simple sine function. On one hand, the longer connecting rod contributes to a reduction in the second-order piston-acceleration component, but, on the other hand, the longer connecting rod increases the overall height of the engine, thereby resulting in an increase in total weight of the engine and preventing easy mounting of the engine on the vehicle engine mount.
Accordingly, it is an object of the invention to provide an improved reciprocating internal combustion engine, which avoids the aforementioned disadvantages.
It is another object of the invention to provide a multiple-link type reciprocating engine, which is capable of effectively reducing a second-order vibration component of a vibrating system of reciprocating motion of each of pistons, synchronizing rotary motion of a crankshaft, without increasing the overall height of the engine, by properly setting dimensions, shapes, layout and relative positions of links via which a crank pin of the crankshaft is connected to a piston pin of each piston.
In order to accomplish the aforementioned and other objects of the present invention, a multiple-link type reciprocating internal combustion engine comprises a piston movable through a stroke in the engine and having a piston pin, a crankshaft changing reciprocating motion of the piston into rotating motion and having a crank pin, a linkage comprising an upper link connected to the piston pin, a lower link connecting the upper link to the crank pin, and a third link pivoted at one end to a body of the engine and connected at its other end to either of the upper and lower links to permit oscillating motion of the third link on the body of the engine, and the upper link, the lower link, and the third link being dimensioned and laid out so that an amplitude of a second-order vibration component of a vibrating system of reciprocating motion of the piston, synchronizing rotary motion of the crankshaft, is reduced to below a predetermined threshold value. It is preferable that the predetermined threshold value of the amplitude of the second-order vibration component is set to be less than or equal to 10% of an amplitude of a first-order vibration component of the vibrating system of reciprocating motion of the piston, synchronizing rotary motion of the crankshaft.
According to another aspect of the invention, a multiple-link type reciprocating internal combustion engine comprises a piston movable through a stroke in the engine and having a piston pin, a crankshaft changing reciprocating motion of the piston into rotating motion and having a crank pin, a linkage comprising an upper link connected to the piston pin, a lower link connecting the upper link to the crank pin, and a third link pivoted at one end to a body of the engine and connected at its other end to either of the upper and lower links to permit oscillating motion of the third link on the body of the engine, and the upper link, the lower link, and the third link being dimensioned and laid out so that an amplitude of a second-order vibration component of a vibrating system of rec

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reciprocating internal combustion engine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reciprocating internal combustion engine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reciprocating internal combustion engine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2824944

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.