Reciprocating floor scraper for discharging bulk material...

Material or article handling – Static receptacle and means for charging or discharging – or... – Nongravity discharging means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C414S326000, C414S328000

Reexamination Certificate

active

06190105

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a device for discharging material from a silo, comprising an elongate discharge opening or channel extending centrally over the silo floor and a push-frame which can be pushed back and forth hydraulically over the silo floor crossways to the longitudinal extension of the discharge channel.
In silos for thick matter and for non-flowing bulk material an additional discharging aid is necessary, which can be in the form of a hydraulic-driven push-frame. The push-frame, while pushing back and forth with its frame crossbeams and struts, engages the material near the floor of the silo and shifts this material in the direction of the discharging opening or channel. In the discharging channel a discharging conveyor can, for example, be mounted in form of a screw conveyor, which transports the material it receives to the outside. The push-frame is normally driven by a hydraulic cylinder, which projects outward beyond the silo casing near the floor and which is connected with the push-frame by its piston rod through an opening in the silo casing. In this manner of construction, piston rods are employed with a relatively long unsupported length over which buckling can occur, and which are exposed to a very high wear-and-tear within the silo container. Additionally, the push-frame drive media comprises a hydraulic oil, which can, in case of a leakage, lead to an unacceptable pollution danger.
SUMMARY OF THE INVENTION
Based thereon, the present invention has task of developing a device for discharging material as described above, which comprises a more efficient introduction of power and improved service life.
The inventive solution is primarily based on the concept that by mounting the hydraulic cylinder driving the push-frame within the silo, a shortening of the piston rods, an improvement of the introduction of power, and an improved guidance of the pushframe can be achieved. In order to accomplish this, it is proposed according to the invention to mount inside the silo a radially extending hydraulic cylinder, which is provided in a cylinder housing connected with the silo-floor, and which with the front face of a piston rod, which is inside a radially inwards directed housing opening, is connected to a driver bearing which is connected to the push-frame.
According to a preferred embodiment of the invention two diametrically opposed radially arranged hydraulic cylinders are provided facing each other inside the silo and controlled in phase opposition in push-pull manner, which are respectively provided in cylinder housings connected with the silo floor, and with piston rods or plungers which extend through respective radially inward facing openings through the housing, which with their opposing front faces fit radially against a driver bearing which is located centrally in the push-frame. By these measures one achieves an optimal force transmission in the central area of the push-frame and a substantial reduction in piston rod length. Further, the two cylinder housings can exhibit on their outer surface a thrust guide for the push-frame, to thereby provide a twist-free and low friction guidance of the push-frame.
In the discharge channel there is preferably a discharge aid, preferably in the form of a screw conveyor, via which the received material can be transported via a central or peripheral outlet opening to the outside.
In order to make possible a high serviceability of the hydraulic cylinders despite the placement within the inner space of the silo, it is proposed according to an advantageous embodiment of the invention, that the cylinder housing respectively extends to the outer edge of the silo floor and is accessible from the outside of this silo via a closable radial opening. A further improvement in this respect can by achieved thereby, when the cylinder housing is in communication with an access opening provided in the silo floor. This makes possible an access to the hydraulic cylinder from the bottom side of the silo floor. The cylinder housing extends beginning with the edge of the floor and preferably respectively over one quarter of the floor diameter, wherein on the inner side of the housing also a guide bushing for the plunger or the piston rod can be provided. The guide bushing can supplementally be provided with rinsing or cleaning channels, via which the piston rod or the plunger can be cleansed with rinsing water.
The silo floor preferably exhibits a circular circumference, while the push-frame is comprised of two mirror-image shaped frame segments, which at their connected facing ends can form an obtuse angle. The push-frame preferably exhibits cross beams and/or frame struts, which on the side opposite to the side facing the floor exhibit a roof like profile over which the material during displacement of the push-frame can easily flow. According to a further preferred embodiment of the invention the push-frame exhibits two spaced apart traverses or transoms or traverse guide arms provided slidingly upon the outside of the housing against the push control, which border against an upwards and downwards open guide frame longitudinally extending within the push pull frame. The driver bearing thereby preferably extends between the two traverses in the central area of the push-frame, which in the area of their ends, on the side opposite the side facing the floor, are connected with each other via a cross beam or tie. On the basis of the inventive arrangement of the hydraulic cylinder on the inside of the silo it is possible to form the hydraulic cylinder as a plunger cylinder, of which the plunger with its free face end lies against the driver bearing. The piston rods of the plunger can on their end faces be formed as convex ball- or cylindrical cups or spherical indentations, while the driver bearing exhibits a concave abutment surface corresponding to the ball- or cylinder hemisphere. This arrangement makes possible a form-fitting assembly of the frame under tension between the piston rods; supplemental screw connections or mechanical couplings are not required.
In order to avoid the danger of a contamination with hydraulic oil in the case of a leak, it is proposed in accordance with a preferred or alternative embodiment of the invention, that the hydraulic driver means for the push-frame is acted upon by water as the hydraulic force.


REFERENCES:
patent: 1837994 (1931-12-01), Preston
patent: 3923149 (1975-12-01), Stearns
patent: 4043488 (1977-08-01), Halvorsen et al.
patent: 4157761 (1979-06-01), Debor
patent: 4363586 (1982-12-01), Gessler et al.
patent: 4731179 (1988-03-01), De Baere
patent: 4763777 (1988-08-01), Hooper et al.
patent: 5249914 (1993-10-01), Cahlander et al.
patent: 5407103 (1995-04-01), Clarström et al.
patent: 28 08 430 (1979-08-01), None
patent: 35 11 177 (1986-10-01), None
patent: 39 06 253 (1990-08-01), None
patent: 662436 (1995-07-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reciprocating floor scraper for discharging bulk material... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reciprocating floor scraper for discharging bulk material..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reciprocating floor scraper for discharging bulk material... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2599391

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.