Rechargeable spinal cord stimulator system

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S043000, C607S117000

Reexamination Certificate

active

06516227

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a Spinal Cord Stimulation System. A spinal cord stimulation system is a programmable implantable pulse generating system used to treat chronic pain by providing electrical stimulation pulses from an electrode array placed epidurally near a patient's spine. The present invention emphasizes the following specific features included within a spinal cord stimulation system: (1) a recharging system, (2) a system for mapping current fields, (3) optional pulse ramping control, and (4) electrode impedance measurements.
Spinal cord stimulation (SCS) is a well accepted clinical method for reducing pain in certain populations of patients. SCS systems typically include an implanted pulse generator, lead wires, and electrodes connected to the lead wires. The pulse generator generates electrical pulses that are delivered to the dorsal column fibers within the spinal cord through the electrodes which are implanted along the dura of the spinal cord. In a typical situation, the attached lead wires exit the spinal cord and are tunneled around the torso of the patient to a sub-cutaneous pocket where the pulse generator is implanted.
Spinal cord and other stimulation systems are known in the art. For example, in U.S. Pat. No. 3,646,940, there is disclosed an implantable electronic stimulator that provides timed sequenced electrical impulses to a plurality of electrodes so that only one electrode has a voltage applied to it at any given time. Thus, the electrical stimuli provided by the apparatus taught in the '940 patent comprise sequential, or non-overlapping, stimuli.
In U.S. Pat. No. 3,724,467, an electrode implant is disclosed for the neuro-stimulation of the spinal cord. A relatively thin and flexible strip of physiologically inert plastic is provided with a plurality of electrodes formed thereon. The electrodes are connected by leads to an RF receiver, which is also implanted, and which is controlled by an external controller. The implanted RF receiver has no power storage means, and must be coupled to the external controller in order for neuro-stimulation to occur.
In U.S. Pat. No. 3,822,708, another type of electrical spinal cord stimulating device is shown. The device has five aligned electrodes which are positioned longitudinally on the spinal cord and transversely to the nerves entering the spinal cord. Current pulses applied to the electrodes are said to block sensed intractable pain, while allowing passage of other sensations. The stimulation pulses applied to the electrodes are approximately 250 microseconds in width with a repetition rate of from 5 to 200 pulses per second. A patient-operable switch allows the patient to change which electrodes are activated, i.e., which electrodes receive the current stimulus, so that the area between the activated electrodes on the spinal cord can be adjusted, as required, to better block the pain.
Other representative patents that show spinal cord stimulation systems or electrodes include U.S. Pat. Nos. 4,338,945; 4,379,462; 5,121,754; 5,417,719 and 5,501,703.
The dominant SCS products that are presently commercially available attempt to respond to three basic requirements for such systems: (1) providing multiple stimulation channels to address variable stimulation parameter requirements and multiple sites of electrical stimulation signal delivery; (2) allowing modest to high stimulation currents for those patients who need it; and (3) incorporating an internal power source with sufficient energy storage capacity to provide years of reliable service to the patient.
Unfortunately, not all of the above-described features are available in any one device. For example, one well-known device has a limited battery life at only modest current outputs, and has only a single voltage source, and hence only a single stimulation channel, which must be multiplexed in a fixed pattern to up to four electrode contacts. Another well-known device offers higher currents that can be delivered to the patient, but does not have a battery, and thus requires the patient to wear an external power source and controller. Even then, such device still has only one voltage source, and hence only a single stimulation channel, for delivery of the current stimulus to multiple electrodes through a multiplexer. Yet a third known device provides multiple channels of modest current capability, but does not have an internal power source, and thus also forces the patient to wear an external power source and controller.
It is thus seen that each of the systems, or components, disclosed or described above suffers from one or more shortcomings, e.g., no internal power storage capability, a short operating life, none or limited programming features, large physical size, the need to always wear an external power source and controller, the need to use difficult or unwieldy surgical techniques and/or tools, unreliable connections, and the like. What is clearly needed, therefore, is a spinal cord stimulation (SCS) system that is superior to existing systems by providing longer life, easier programming and more stimulating features in a smaller package without compromising reliability. Moreover, the surgical tools and interconnections used with such SCS system need to be easier and faster to manipulate. Further, the stimulating features available with the system need to be programmable using programming systems which are easy to understand and use, and which introduce novel programming methods that better address the patient's needs.
SUMMARY OF THE INVENTION
The present invention addresses the above and other needs by providing an SCS system that is designed to be superior to existing systems. More particularly, the SCS system of the present invention provides a stimulus to a selected pair or group of a multiplicity of electrodes, e.g., 16 electrodes, grouped into multiple channels, e.g., four channels. Advantageously, each electrode is able to produce a programmable constant output current of at least 10 mA over a range of output voltages that may go as high as 16 volts. Further, in a preferred embodiment, the implant portion of the SCS system includes a rechargeable power source, e.g., a rechargeable battery, that allows the patient to go about his or her daily business unfettered by an external power source and controller. The SCS system herein described requires only an occasional recharge; the implanted portion is smaller than existing implant systems, e.g., having a rounded case with a 45 mm diameter and 10 mm thickness; the SCS system has a life of at least 10 years at typical settings; the SCS system offers a simple connection scheme for detachably connecting a lead system thereto; and the SCS system is extremely reliable.
As a feature of the invention, each of the electrodes included within the stimulus channels may not only deliver up to 12.7 mA of current over the entire range of output voltages, but also may be combined with other electrodes to deliver even more current. Additionally, the SCS system provides the ability to stimulate simultaneously on all available electrodes. That is, in operation, each electrode is grouped with at least one additional electrode. In one embodiment, such grouping is achieved by a low impedance switching matrix that allows any electrode contact or the system case (which may be used as a common, or indifferent, electrode) to be connected to any other electrode. In another embodiment, programmable output current DAC's (digital-to-analog converters) are connected to each electrode node, so that, when enabled, any electrode node can be grouped with any other electrode node that is enabled at the same time, thereby eliminating the need for the low impedance switching matrix. This advantageous feature thus allows the clinician to provide unique electrical stimulation fields for each current channel, heretofore unavailable with other “multichannel” stimulation systems (which “multichannel” stimulation systems are really multiplexed single channel stimulation systems). Moreover,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rechargeable spinal cord stimulator system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rechargeable spinal cord stimulator system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rechargeable spinal cord stimulator system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3134390

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.