Rechargable battery pack and battery pack charger with...

Electricity: battery or capacitor charging or discharging – Cell or battery charger structure – For battery pack

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06326766

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to battery charging systems and more particularly to battery chargers and rechargeable battery packs.
BACKGROUND OF THE INVENTION
Rechargeable batteries are well known in the prior art. Rechargeable batteries are capable of being charged prior to initial use and recharged after being discharged. Generally, rechargeable batteries are charged by a battery charger having a power supply that can provide a supply of DC current. A rechargeable battery accepts the electrical current and converts it into chemical energy. As long as the rechargeable battery is capable of converting the electrical current into chemical energy, the rechargeable battery will not significantly rise in temperature. When a rechargeable battery is at full capacity, it is incapable of converting the charge current into chemical energy and it dissipates any continuing charge current as heat. The heat generated by a rechargeable battery is an ideal parameter to sense that it has reached a fully charged state.
One or more rechargeable batteries are oftentimes packed together in series as a rechargeable battery pack to provide a desired operational voltage and current. The rechargeable battery packs are often used to power battery powered devices such as toys which are oftentimes operated by children. The rechargeable battery packs are removable from a battery powered device for a number of reasons. A reason for providing a removable rechargeable battery pack is that one battery pack can be remotely charged while another is being used in the battery powered device. The typical rechargeable battery pack has one or more rechargeable batteries coupled in series together. Two terminals of the rechargeable battery pack are coupled to each end terminal of the series of rechargeable batteries. At least one end terminal of the series of rechargeable batteries is typically coupled to one of the terminals of the battery pack by a wire. The rechargeable batteries are encased into a rechargeable battery case with a positive battery pack terminal protruding through an opening in one side of the case and a negative battery pack terminal protruding through another opening in the other side of the case in order to make contact with charging terminals of a battery pack charger. The rechargeable battery case is typically made of a plastic material that is insulating so as not to short to metal electrical contact points.
The typical rechargeable battery pack case is rectangularly shaped. The typical width of a rechargeable battery pack case is approximately the length of a rechargeable battery when rechargeable batteries are oriented therein side by side without stacking. The typical length of a rechargeable battery pack case is approximately the sum of the diameters or widths of rechargeable batteries held within the case for rechargeable batteries sitting side by side. On the left and right sides of the rechargeable battery pack case, there is a base edge and a top edge. The base edge has a narrower region than the typical width of the rechargeable battery pack case. To hold the rechargeable battery pack into a battery powered device or battery charger, the typical rechargeable battery pack case has multiple L shaped tabs along the base edge of one side and three mirrored-L shaped tabs along the base edge of the opposite side. The multiple L shaped tabs and the multiple mirrored-L shaped tabs protrude from the narrower region of the base edge to approximately have the typical width of the typical rechargeable battery pack. The shape and foot of the L and mirrored-L shaped tabs hold the battery pack in contact to the terminals of the battery powered device or battery charger.
The typical battery pack charger has open faced surfaces to couple with the rechargeable battery pack. The battery pack charger includes two opposing surfaces one having a positive electrical contact protruding through it and another having a negative electrical contact protruding through it. These electrical contacts are accessible to a user and typically do not have any safety concerns as the voltage on these terminals is below 24 volts which is considered a safe voltage. This low voltage is typical of low current chargers in that an isolation transformer is used to convert the 120 volt AC-line power into a lower voltage that is typically 12 volts AC. Higher current power systems are required if a battery is to be charged at a higher rate, which means a higher charge current. Higher current power supplies in some cases cannot employ an isolation transformer to step the 120 volt AC-line power down to a safe voltage. This is because an appropriate sized isolation transformer may be very expensive, large and heavy. Without an isolation transformer, the terminals of the charger may be unsafe to touch because a high voltage may be present at the electrical contacts. Touching just one terminal can result in shock because a current may be able to travel from the non-isolated electrical contact of the charger through a human body to ground.
When engaged, the rechargeable battery pack is not enclosed by the typical battery pack charger. The surfaces of the rechargeable battery pack are grabable by a user to engage or disengage it with the battery pack charger. To engage with a battery pack charger, the rechargeable battery pack is slid against a flat surface of the battery pack charger between the two opposing surfaces, orthogonal to the flat surface and separated by the width of the rechargeable battery pack, in order to make mechanical and electrical connections with the charger. The electrical and mechanical connections are made on the sides of the rechargeable battery pack. One of the two opposing surfaces of the battery pack charger has a negative electrical contact protruding through side to make electrical connection to the contact on one side of the rechargeable battery pack and another one of the two opposing surfaces has a positive electrical contact protruding through so as to make electrical connection with the contact on the other side of the rechargeable battery pack.
To make mechanical connections, the typical battery pack charger includes an upside down L shaped tab and an upside down mirrored-L shaped tab in the respective opposing surfaces. The battery pack case of the rechargeable battery pack, uses the L and mirrored-L shaped tabs closest to the terminals of its three L and mirrored-L shaped tabs to mate with the battery pack charger. The upside down L shaped tab of the battery pack charger mates with the first mirrored-L shaped tab of the rechargeable battery pack on one side. The upside down mirrored-L shaped tab of the rechargeable battery pack mates with the first L shaped tab of the rechargeable battery pack on the opposite side. The mating between these tabs, keeps the rechargeable battery pack from moving further forward, keeps it aligned with the electrical contacts and keeps the rechargeable battery pack coupled in place to the battery pack charger in one direction.
To hold the rechargeable battery pack in place in an orthogonal direction, the battery pack charger includes a spring loaded latch mechanism having a catch and a user push button. The spring loaded latch interfaces to one side only of the rechargeable battery pack when inserted. With the rechargeable battery pack being inserted, as the first mirrored-L shaped tab passes over the catch of the spring loaded latch, the catch of the spring loaded latch is depressed into the charger. After the end of the first mirrored-L shaped tab has passed, the catch of the spring loaded latch is released to protrude up behind the first mirrored-L shaped tab in order to hold the rechargeable battery pack to the battery pack charger. To release the rechargeable battery pack from the battery pack charger, a user depresses the button of the spring loaded latch to depress the catch so the first mirrored-L shaped tab can clear the catch as the rechargeable battery pack is pulled away by a user from the battery pack charger.
A typical low-cost battery cha

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rechargable battery pack and battery pack charger with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rechargable battery pack and battery pack charger with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rechargable battery pack and battery pack charger with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2573332

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.