Pulse or digital communications – Cable systems and components
Reexamination Certificate
1999-11-04
2003-07-29
Vo, Don N. (Department: 2631)
Pulse or digital communications
Cable systems and components
Reexamination Certificate
active
06600791
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a receiver for receiving a signal transmitted from a transmitter via a transmission line, and a signal transmission system for transmitting a signal via a transmission line.
2. Description of the Related Art
In a conventional signal transmission system, a terminal resistor is connected to one end or both ends of a transmission line. The resistance value of the terminal resistor is set to about 50 ohms so as to match with the impedance of the transmission line (about 50 ohms). In such a signal transmission system, the value of a signal being transmitted (i.e., “0” or “1”) is determined by the direction or the current value of the current flowing through the terminal resistor.
For example, consider a case where a 1.5 V terminal power supply and a transmission line are connected to each other via a terminal resistor having a resistance of 50 ohms. In such a case, when a current flows into the transmission line from a driver of a 3.0 V power supply voltage, the transmission line has a potential (“H” potential) which is higher than the 1.5 V terminal power supply by a voltage increase. The voltage increase is determined based on the current flowing into the 1.5 V terminal power supply and on the terminal resistance of 50 ohms. The H potential represents a transmitted signal having a value “1”, for example.
Conversely, when the driver draws a current from the 1.5 V terminal power supply toward a point at the terminal potential, the transmission line has a potential (“L” potential) which is lower than the 1.5 V terminal power supply by a voltage decrease. The voltage decrease is determined based on the current flowing out of the 1.5 V terminal power supply and the terminal resistance of 50 ohms. The L potential represents a transmitted signal having a value “0”, for example.
In such a conventional signal transmission system, a change in current of 10 mA is required for obtaining a change in signal on the transmission line of 500 mV.
The above-described conventional signal transmission system has the following disadvantages: 1) the change in signal on the transmission line is determined by the voltage decrease (or the voltage increase) which is caused by the terminal resistor. Therefore, in order to increase the change in signal on the transmission line, it is necessary to increase the amount by which the voltage is decreased (or the amount by which the voltage is increased) which is caused by the terminal resistor; and 2) the resistance value of the terminal resistor is determined so as to match with the impedance of the transmission line. Therefore, the resistance value of the terminal resistor cannot be increased to increase the change in signal on the transmission line.
Due to the disadvantages 1) and 2), the only way to increase the change in signal on the transmission line is to increase the change in the current flowing through the transmission line. In order to increase the change in the current flowing through the transmission line, the conventional signal transmission system determines the value of the transmitted signal by switching the direction of the current flow along the transmission line or by switching between conducting a current through the transmission line and conducting no current therethrough.
However, such a large change in the current flowing through the transmission line may disturb the waveform of the transmitted signal. This is because the transmitted signal may be influenced by an induced potential (dV=−L*dI/dT), which is determined by the product of the inductance value (L) of the transmission line and the rate of change per unit of time (dI/dT) in the current flowing through the transmission line.
Such a large change in the current flowing through the transmission line may disturb the waveform of the transmitted signal also in a differential type signal transmission system in which two transmission lines are short circuitted via a resistor.
SUMMARY OF THE INVENTION
According to one aspect of this invention, a receiver for receiving a signal transmitted from a transmitter via a transmission line includes: a current control section for allowing a current to flow into the current control section from the transmission line or flow from the current control section to the transmission line, wherein the current has an amount which varies according to a logical level of the signal and flows in a same direction irrespective of the. logical level of the signal; and a determination section for determining the logical level of the signal based on the amount of current which has flowed from the transmission line into the current control section or based on the amount of current which has flowed out from the current control section to the transmission line.
In one embodiment of the invention, the current control section includes: a constant current supply section for supplying a constant current; and a difference current compensation section for compensating for a difference current having an amount which represents a difference between the amount of current which has flowed in from or flowed out to the transmission line and an amount of the constant current.
In one embodiment of the invention, the determination section determines the logical level of the signal based on a direction in which the difference current flows.
In one embodiment of the invention, the logical level of the signal “0” or “1” is represented by the amount of current flowing through the transmission line.
In one embodiment of the invention, three or more different logical levels of the signal are represented by the amount of current flowing through the transmission line.
According to another aspect of this invention, a signal transmission system for transmitting a signal via a transmission line includes: a current supply section for supplying a current to the transmission line, wherein the current has an amount which varies according to a logical level of the signal and flows in a same direction irrespective of the logical level of the signal; a current control section for allowing the current to flow into the current control section from the transmission line or flow from the current control section to the transmission line irrespective of the amount of the current supplied from the current supply section to the transmission line; and a determination section for determining the logical level of the signal based on the amount of current which has flowed from the transmission line into the current control section or based on the amount of current which has flowed out from the current control section to the transmission line.
In one embodiment of the invention, the current control section includes: a constant current supply section for supplying a constant current; and a difference current compensation section for compensating for a difference current having an amount which represents a difference between the amount of current which has flowed in from or flowed out to the transmission line and an amount of the constant current.
In one embodiment of the invention, the signal transmission system includes a transmitter for transmitting the signal and a receiver for receiving the signal. The current supply section is included in the transmitter. The constant current supply section, the difference current compensation section and the determination section are included in the receiver.
In one embodiment of the invention, the signal transmission system includes a transmitter for transmitting the signal and a receiver for receiving the signal. The current supply section and the constant current supply section are included in the transmitter. The difference current compensation section and the determination section are included in the receiver.
In one embodiment of the invention, the determination section determines the logical level of the signal based on a direction in which the difference current flows.
In one embodiment of the invention, the logical level of the signal “0” or “1” is represented by the am
Snell & Wilmer LLP
Vo Don N.
LandOfFree
Receiver and signal transmission system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Receiver and signal transmission system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Receiver and signal transmission system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3085304