Rear projection screen

Optical: systems and elements – Projection screen – Embedded particles

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06760155

ABSTRACT:

TECHNICAL FIELD
The present invention relates to an image display technique, and particularly to a rear projection screen which is suitably used as a screen for a projection television, a microfilm reader or the like. The rear projection screen of the present invention is suitably applicable to a rear projection screen onto which an optical image formed on a light valve (light source) having matrix-arranged picture element portions (that is, having such a structure that picture element portions are arranged in a matrix form) such as an LCD (liquid crystal device) projector or DMD (digital micromirror device) projector is projected.
BACKGROUND TECHNIQUE
For rear projection type televisions, it has been hitherto required that projected images can be brightly viewed in a wide viewing angle range at the viewing side, and rear projection screens having anisotropy in visual field which are designed to diffuse light broadly particularly in a horizontal direction and diffuse light properly in a vertical direction although the diffusion angle range in the vertical direction is smaller than that in the horizontal direction have been used.
A lenticular lens sheet is known as one of these rear projection screens. In the lenticular lens sheet, lenticular lenses each extending in the vertical direction are arranged in parallel on one surface or both surfaces of a sheet to provide the sheet with a light diffusion property to form a light diffusion sheet, and light diffusing members or light diffuser are contained in the diffusion sheet so that light is broadly diffused in the horizontal direction by the lenticular lenses and also it is diffused to some extent in the vertical direction by the light diffuser.
Besides, a projector using a device for performing a display operation by using a matrix pixel structure such as LCD or DMD in place of CRT has propagated as a projection image source used in combination with the rear projection screen. Such a projectior structurally suffers no geomagnetic effect unlike a CRT projector, and thus it is very preferably used as an image light source for a display device of a computer such as a personal computer or the like which is usually used to display still images. Such a rear projection screen using LCD or DMD as a projector has been required to have new performance because it is also used for a display device having a relatively small area of about 14 to 40 inches, such as a personal computer monitor for viewing images at a relatively near position to the screen of the device.
That is, it has been required (1) to cancel a moire phenomenon or scintillation phenomenon occurring due to the interference between periodical structures of projection pixels and lenticular lenses, (2) to cancel a speckle phenomenon occurring due to the interference between projection light and light diffuser added in the lenticular lenses or due to the glare of minute projections and recesses on the surface of the screen or the diffuser (hereinafter referred to as “speckle”), and (3) to clearly resolve images of conventional VGA, SVGA and further high pixel number graphics of XGA, SXGA, UXGA, etc.
For these performance requirements, the following resolving proposals have been made for not only a rear projection screen for a projector using LCD or DMD, but also a rear projection screen for a projector using CRT or the like.
With respect to (1), each of Japanese Patent Application Laid-open Publication No. Hei-3-168630 and Japanese Patent Application Publication No. Hei-7-117818 proposes a method of canceling the moire phenomenon by optimizing the pitch ratio between the projection pixels and the lenticular lenses, and each of Japanese Patent Application Laid-open Publication No. Hei-2-123342 and Japanese Patent Application Laid-open Publication No. Hei-2-212880 proposes a method of canceling the moire phenomenon by inclining the lenticular lenses relatively to the projection pixels.
As described above, the moire phenomenon occurring due to the periodical structure of the lenticular lenses and the projection pixel pitch can be canceled by optimizing the pitches thereof. However, when the number of pixels is increased to the level of XGA class or SXGA class or more or when an image is projected onto a relatively small screen of about 14 to 40 inches, the pitch of the lenticular lenses must be reduced to a very small value of about 0.1 mm or less to cancel the moire phenomenon because the pitch of the pixels constituting an image projected on the rear projection screen is very small, and thus there are problems that it is very difficult to manufacture a mold for such lenses, it is impossible to transfer the lens shape accurately, and the lifetime of the mold is reduced.
With respect to (2), each of Japanese Patent Application Laid-open Publication No. Hei-8-313865, U.S. Pat. No. 5,675,435, U.S. Pat. No. 3,712,707 and Japanese Patent Application Laid-open Publication No. Sho-55-12980 proposes a method of reducing the speckle by dividing a light diffusion layer or grading the concentration of the light diffuser in the thickness direction.
With respect to (3), Japanese Patent Application Laid-open Publication No. Sho-55-12980 discloses that the thickness of the diffusion layer is reduced to 100 &mgr;m or less to obtain a rear projection screen having resolving power higher than that of the human eyes (5 to 10 lines/mm).
However, any of the above prior arts cannot satisfy all of the performance requirements (1) to (3). Particularly, the reduction of the speckle in (2) and the high resolving power in (3) are in tradeoff relationship with each other. If the reduction of the speckle is attempted, the resolving power is reduced. If the resolving power is increased, the speckle is more remarkable. For example, in Japanese Patent Application Laid-open Publication No. Hei-8-313865, the speckle can be reduced by dividing a light diffusion layer and setting the distance from the light incident face of a first light diffusion layer to the light emission face of a second light diffusion layer to 1.5 mm or more. However, in the case of the high pixel number such as XGA, SXGA class or higher case, the resolving power is reduced and thus a projected image of high resolution cannot be provided. Further, if the thickness of the diffusion layer is reduced to 100 &mgr;m or less as in the case of Japanese Patent Application Laid-open Publication No. Sho-55-12980, occurrence of speckle is remarkable although a projected image of high resolution is obtained, and thus a high quality projection cannot be provided.
Further, a sheet which is formed of methacrylic resin, polycarbonate resin or the like and contains an inorganic or organic light diffuser is generally used as a light diffusion sheet used for such a rear projection screen or the like.
The light diffuser is required to have the following characteristics: it enhances the light diffusion performance of the light diffusion sheet and the rear projection screen and has high total-light transmittance and a high light using efficiency; it has proper color temperature; and it exhibits neither the see-through feature that a light source image such as a lamp image, CRT or liquid crystal projector is seen through the screen nor the hot band that striped bright portions are partially viewed.
As the light diffuser having the above characteristics are used inorganic light diffuser such as silica, muscovite, alumina, calcium carbonate, glass beads or the like as disclosed in Japanese Patent Application Laid-open Publication No. Sho-60-46503, or resin beads of acrylic resin or styrene resin as disclosed in Japanese Patent Application Laid-open Publication No. Sho-61-4762.
In order to keep the light transmission and the light diffusion in balance, there have been proposed various light diffusion sheets and various compositions using silicone-based light diffuser. Examples thereof are as follows: a light diffusion plate composed of transparent resin dispersed with light diffuser which is made of spherical, solid silicone resin, has a size of 0.3 to 10 &mgr;m and ha

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rear projection screen does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rear projection screen, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rear projection screen will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3257374

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.