Boring or penetrating the earth – Bit or bit element – Bit with leading portion forming smaller diameter initial bore
Reexamination Certificate
2002-04-10
2004-02-24
Tsay, Frank (Department: 3672)
Boring or penetrating the earth
Bit or bit element
Bit with leading portion forming smaller diameter initial bore
C175S398000
Reexamination Certificate
active
06695080
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to enlarging the diameter of a subterranean borehole and, more specifically, to enlarging the borehole below a portion thereof which remains at a lesser diameter. The reaming method and apparatus of the present invention include the capability to drill out cement and float equipment resident in a casing above the borehole interval to be enlarged with substantially no damage to the casing interior or the reaming apparatus. The reaming method and apparatus of the present invention also provide the capability to clean up and remove cement, cement float equipment, debris, and other contaminates that have formed restrictions within a cased or open borehole. The reaming apparatus of the present invention also provides enhanced protection for selected structural features and elements thereof.
2. State of the Art
It is known to employ both eccentric and bi-center bits to enlarge a borehole below a tight or undersized portion thereof.
An eccentric bit includes an eccentrically, laterally extended or enlarged cutting portion which, when the bit is rotated about its axis, produces an enlarged borehole. An example of an eccentric bit is disclosed in U.S. Pat. No. 4,635,738.
A bi-center bit assembly employs two longitudinally superimposed bit sections with laterally offset axes. The first axis is the center of the pass-through diameter, that is, the diameter of the smallest borehole the bit will pass through. This axis may be referred to as the pass-through axis. The second axis is the axis of the hole cut as the bit is rotated. This axis may be referred to as the drilling axis. There is usually a first, lower and smaller diameter pilot section employed to commence the drilling, and rotation of the bit is centered about the drilling axis as the second, upper and larger diameter main bit section engages the formation to enlarge the borehole, the rotational axis of the bit assembly rapidly transitioning from the pass-through axis to the drilling axis when the full-diameter, enlarged borehole is drilled.
Rather than employing a one-piece drilling structure such as an eccentric bit or a bi-center bit to enlarge a borehole below a constricted or reduced-diameter segment, it is also known to employ an extended bottomhole assembly (extended bi-center assembly) with a pilot bit at the distal or leading end thereof and a reamer assembly some distance above. This arrangement permits the use of any bit type, be it a rock (tri-cone) bit or a drag bit, as the pilot bit. Further, the extended nature of the assembly permits greater flexibility when passing through tight spots in the borehole as well as the opportunity to effectively stabilize the pilot bit so that the pilot hole and the following reamer will take the path intended for the borehole. This aspect of an extended bottomhole assembly is particularly significant in directional drilling.
While all of the foregoing alternative approaches can be employed to enlarge a borehole below a reduced-diameter segment, the pilot bit with reamer assembly has proven to be highly effective. The assignee of the present invention has, to this end, designed as reaming structures so-called “reamer wings” in the very recent past, which reamer wings generally comprise a tubular body having a fishing neck with a threaded connection at the top thereof and a tong die surface at the bottom thereof, also with a threaded connection. As an aside, short-bodied tools frequently will not include fishing necks, including the short-bodied reamer wings designed by the assignee of the present invention. The upper midportion of the reamer wing includes one or more longitudinally extending blades projecting generally radially outwardly from the tubular body, the outer edges of the blades carrying superabrasive (also termed “superhard”) cutting elements; commonly such superabrasive cutting elements, or cutters, are frequently comprised of PDC (Polycrystalline Diamond Compact) cutters. The lower midportion of the reamer wing may include a stabilizing pad having an arcuate exterior surface of the same or slightly smaller radius than the radius of the pilot hole on the exterior of the tubular body and longitudinally below the blades. The stabilizer pad is characteristically placed on the opposite side of the body with respect to the reamer wing blades so that the reamer wing will ride on the pad due to the resultant force vector generated by the cutting of the blade or blades as the enlarged borehole is cut.
While the aforementioned reamer wing design enjoyed some initial success, it was recognized that the device as constructed might not effectively and efficiently address the problem or task of achieving a rapid transition from pass-through to full-hole or “drill” diameter which closely tracks the path of the pilot bit and which does not unduly load the blades or bottomhole assembly during the transition. Since a reamer wing may have to re-establish a full-diameter borehole multiple times during its drilling life in a single borehole, due to washouts and doglegs of the pilot hole, a rapid transitioning ability when reaming is restarted as well as a robust design which can accommodate multiple transitions without significant damage was recognized as a desirable characteristic and design modification. U.S. Pat. No. 5,497,842, assigned to the assignee of the present invention and hereby incorporated by reference herein, discloses the use of so-called “secondary” blades on the reamer wing to speed the transition from pass-through to drill diameter with reduced vibration and borehole eccentricity.
While the improvement of the '842 patent has proven significant, it was recognized that further improvements in the overall stability of the bottomhole assembly, including transitioning from pass-through to drill diameter, would be highly desirable. One problem the prior art reamer assembly designs have experienced is undue vibration and even so-called bit “whirl,” despite the focused or directed force vector acting on the reaming assembly and the presence of the stabilization pad. These undesirable phenomena appear to be related to the configuration of the stabilization pad (illustrated in FIG. 5 of the '842 patent), which engages the borehole wall axially and circumferentially under the radially directed resultant force vector of the reamer wing as the assembly drills ahead in the pilot hole, due to the pad's abrupt radial projection from the reamer wing body. Furthermore, it was observed that the entire bottomhole reaming assembly as employed in the prior art for straight-hole drilling with a rotary table or top drive often experiences pipe “whip” due to lack of sufficient lateral or radial stabilization above the reamer wing. In addition, reaming assemblies driven by downhole steerable motors for so-called directional or navigational drilling experienced problems with stability under the lateral forces generated by the reamer wing so as to make it difficult to maintain the planned borehole trajectory.
U.S. Pat. No. 5,765,653, assigned to the assignee of the present invention and hereby incorporated by reference herein, addresses the aforementioned problems by providing an axially as well as circumferentially tapered pilot stabilizer pad (see FIGS. 4, 6, 7 and 7A of the '653 patent), to which may optionally be added one or more eccentric stabilizing elements above the reaming apparatus (see FIGS. 8-12 of the '653 patent).
One remaining problem with the use of state of the art reaming apparatus is the inability to rotate the apparatus while passing the reaming apparatus through a casing above a borehole interval to be enlarged without damage to the casing interior or to the apparatus. This is due, in large part, to the fact that there are typically, but not necessarily, three points of contact (also termed “pass-through points”) between the casing and the reaming apparatus, a stabilization pad as disclosed in the aforementioned '842 and '653 patents, and radially ou
Charles Christopher S.
Clinkscales D. Jay
Laing Robert A.
Lund Jeffrey B.
Meiners Matthew J.
Baker Hughes Incorporated
TraskBritt
Tsay Frank
LandOfFree
Reaming apparatus and method with enhanced structural... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Reaming apparatus and method with enhanced structural..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reaming apparatus and method with enhanced structural... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3311165