Reallocation procedure

Multiplex communications – Communication techniques for information carried in plural... – Adaptive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S458000

Reexamination Certificate

active

06504853

ABSTRACT:

TECHNICAL FIELD OF INVENTION
The present invention relates to methods, a controller and a system for allocating access to time slots used for transferring data between nodes in a time multiplexed network, such as a Dynamic Synchronous Transfer Mode (DTM) network, whose bandwidth is divided into cycles which in turn are divided into control slots for control signalling and data slots for transferring data, wherein slots allocated to a primary home node may be temporarily allocated to a temporary home node, said temporary home node instead of said primary home node then temporarily having the write access to said slots, and subsequently reallocated to said primary home node.
DESCRIPTION OF RELATED ART
As an example of a time multiplexed network, DTM is a broadband network architecture (see e.g., Christer Bohm, Per Lindgren, Lars Ramfelt, and Peter Sjödin, The DTM Gigabit Network, Journal of High Speed Networks, 3(2), pp 109-126, 1994 and Lars Gauffin, Lars H{dot over (a)}kansson, and Björn Pehrson, Multi-gigabit networking based on DTM, Computer Networks and ISDN Systems, 24(2), pp 119-139, April 1992). DTM is a circuit switched network and intended to be used in public networks as well as in local area networks (LAN's). It uses channels as the communication abstraction. The channels differ from telephony circuits in various ways. First, establishment delay is short so that resources can be allocated/reallocated dynamically as fast as user requirements change. Second, they are simplex and so minimise overhead when the communication is unidirectional. Third, they offer multiple bit-rates to support large variations in user capacity requirements. Finally, they are multicast, allowing several destinations.
DTM channels share many beneficial properties with circuits. There is no transfer of control information after channel establishment, resulting in very high utilisation of network resources for large data transfers. Support of real-time traffic is natural; there is no need for policing, congestion control or flow-control within the network. The control information is separated from data, which makes multicast less complex. The transmission delay is negligible (i.e., less than 125 ms) and there is no potential for data loss because of buffer overflow as in ATM (
A
synchronous
T
ransfer
M
ode). Bit-error rates depend on the underlying link technologies, and switches are simple and fast due to strict reservation of resources at channel set-up. DTM can show good performance in areas where traditional circuit-switched networks fall short: dynamic bandwidth allocation, channel establishment delay, and as shared media networks.
The basic topology of a DTM network is preferably a bus with two unidirectional optical fibers connecting all nodes, but can also be realised by any other kind of structure, e.g., a ring structure. The DTM medium access protocol is a time-division multiplexing scheme. The bandwidth of the bus is divided into 125 &mgr;s cycles, which in turn are divided into 64-bit time slots. The number of slots in a cycle thus depends on the network's bit-rate. The slots are divided into two groups, control slots and data slots. Control slots are generally static and used to carry messages for the network's internal operation. The data slots are used to transfer user data between the nodes.
Generally, in each network node there is a node controller, which controls the access to data slots and performs network management operations.
Control slots are used exclusively for control messages between these node controllers. Each node controller preferably has write access to at least one control slot in each cycle, which it uses to multicast control messages to other node controllers. Here, multicast refers to sending information to one or more downstream nodes on a bus, as the transmission medium is unidirectional. Since write access to control slots is exclusive, the node controller always has access to its control slots regardless of other nodes and network load.
The majority of the slots in a cycle are data slots. Access to data slots changes over time, according to traffic demands. Write access to slots is controlled by slot access, sometimes referred to as slot tocens. A node controller may write data into a specific slot only if the node has write access to this specific slot. The slot access protocol, or token protocol, guarantees the slot access to be conflict free, which means that several nodes do not write data into the same slot.
One optimisation in slot access management is to introduce so called block access or block tokens, i.e. access to a number of slots arranged contiguously in a slot range. A block token, i.e. access to a group of slots, may be transferred in a single control message, but can only be used for particular combinations of slots. For instance, block access may be denoted by a slot number and an offset giving the number of contiguous slots in the group or block.
Also, write access to slots (single or block) may be exchanged or varied between different nodes during network operation, for example as a result of a node asking for more transferring capacity by requesting write access to more slots from other nodes. One of the major problems with this kind of write access allocation is fragmentation. The average number of contiguous available time slots allocated to a node of a DTM-like network is small due to the random movement and exchange of slot access and the varying capacity of users' requests. This gives relatively long access delays (in the millisecond region) for high capacity channels, particularly at moderate to high load.
One way of dealing with this fragmentation problem is to define a home node for each slot at network start-up or during network operation. This is preferably done in such a way that slots having the same home node preferably define at least partly a continuous slot range. The nodes may then “borrow” available or free slots from each other, sending back free slots to their respective home node, for example when a significant time has passed. Also, two or more consecutive slots are preferably merged into a single block token when existing in the free pool of a node.
Hence, in a DTM-like system of this kind, a first node may have write access to a first set of slots and a second node may have write access to a second set of slots. Then, the first node is said to be the primary home node of the first set of slots and the second node is said to be the primary home node for the second set of slots. However, if the first node at some time require more transferring capacity to fulfil the demands of one or more users attached to the first node, it may temporarily lend or borrow slots from another node, for example the second node, presently having a surplus of slots. In such a case, one or more slots having the second node as primary home node may be temporarily allocated to the first node, the first node then being a so called temporary home node of said one or more borrowed slots and hence temporarily having the write access thereto. When the demand for transferring capacity in the first node decreases, or for example after a predefined time interval or, said one or more borrowed slots are returned to their primary or actual home node, i.e. the second node.
However, nodes in, e.g., an integrated services network will have different load depending on the equipment attached to it. Also, the load will vary in time. In case of non-uniform traffic, a node that requires high capacity may have to regularly borrow slots from and return slots to their respective home node, which results in overhead for slot negotiation and longer set-up times for the channels.
SUMMARY OF THE INVENTION
The object of the invention is to avoid the problems mentioned above with overhead for slot access negotiation in a time multiplexed network, such as a Dynamic Synchronous Transfer Mode (DTM) network, whose bandwidth is divided into cycles, which in turn are divided into time slots comprising control slots for control signalling and data sl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reallocation procedure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reallocation procedure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reallocation procedure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3043201

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.