Real-time site specific weather information distribution...

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Earth science

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06542825

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of Invention
The present invention relates generally to the field of weather data distribution systems and methods, and more particularly to a system and method for distributing weather related electronic communications between remote sensing units, broadcasters, and others having systems configured to receive such electronic communications in order to provide a substantially complete picture of meteorological events occurring at a particular geographic location in real-time.
While the present invention is subject to a wide range of information dissemination applications, it is particularly well suited for the distribution of observed meteorological events obtained by ground based sensing unites to broadcasters and others, over a computer based network. The weather related electronic communications may then be combined with weather information obtained from radar and/or other sources to provide an integrated and interactive graphical display of the received weather information and observed meteorological events for a given geographical area.
2. Technical Background
In today's weather reporting and forecasting fields, an ever increasing importance is being placed on timeliness and accuracy of the information being broadcast or otherwise reported. A large percentage of the population of the United States relies upon weather reports and forecasts broadcast by both local and national television stations and Emergency Management Agencies (EMAs) to accurately relay current weather conditions, and to make predictions relating to future weather conditions for that portion of the population's particular geographic area as well as other geographic areas of interest. This information is generally used by individuals to make decisions such as what to wear, whether they should participate in certain activities or not, when they should embark on a trip, when they should seek shelter, etc. When severe weather threatens a particular geographic area, a majority of the population made aware of the severe weather for that particular geographic area has an immediate desire to find out as much information as possible about the severe weather. Weather events such as tornadoes, severe thunderstorms, hail, lightning, and high winds present a risk of damage to property, injury to persons, and in some cases death. For these reasons, it benefits individuals to determine if they are likely to be affected by such severe weather. If they are, they can seek shelter, or otherwise take cover to protect themselves from these events. Accordingly, it is important that the information viewers receive is timely and accurate.
During the last two decades, significant strides have been made in this regard. The National Weather Service (NWS) now maintains a network of weather radar installations located at approximately one-hundred and thirty-eight sites throughout the United States. Observers at each of these installations monitor the weather conditions for their respective geographic areas of radar coverage, and provide periodic reports such as teletyped messages and more recently, information known generally in the art as NEXRAD attributes, to subscribers. Generally speaking, this information is distributed to subscribers through third party weather service providers such as GTE Contel. Other weather service providers, such as Global Atmospherics in Arizona, provide information such as lightning strike data on a subscription basis. In addition, many local television stations now own or lease their own weather radar systems. This technology gives these stations the ability to broadcast real-time weather information for the benefit of the portion of the public in the viewing areas of these station.
The weather information provided by any one or combination of services discussed above may be synthesized at a local television station or a third party provider into a understandable format for graphical display, or other form of dissemination, to the public. Typically, the meteorological data is collected from one or more sources at the local television station and combined with geographic image maps of a predetermined geographic region to generate a graphic display of the weather conditions for that predetermined geographic region. The composite weather images can be stored over time, sequenced, and looped with the aid of a computer system so that the television stations and other broadcast mediums can deliver weather animation that simulates the movement of the weather system across the geographic region over a period of time. Technology has also advanced such that television stations and Internet providers can now operate computer systems that actually predict storm movement and other weather system movement, and forecast that movement for some time into the future. Such systems are generally known in the art as storm tracking systems.
Remote sensing devices used to provide weather information/data for broadcast and other purposes as described above, such as the NWS weather radars and locally owned weather radars, do have limitations. Weather radar systems in operation today generally provide atmospheric information for a volume of air that can extend from a few hundred feet above the ground to the top of the atmosphere. Thus, when radar information is processed and synthesized for a particular weather phenomenon such as a storm, and is thereafter graphically displayed in a video broadcast or otherwise, what a viewer sees is a graphical depiction of that weather phenomenon or storm at those elevations. The radar information does not provide data relating to what is actually occurring meteorologically at ground level beneath that weather phenomenon. As a result, it is quite often the case that viewers see a storm associated with their geographic location when viewing a television or other weather broadcast, which indicates to the viewer that rain, hail, snow, ice, severe winds, or some other weather phenomenon should be occurring at their location, but in fact, no such event is occurring. Generally, when this happens the viewer believes he has received a bad or faulty forecast. In reality, the forecast is generally accurate, but it is accurate for what is occurring several hundred feet above the viewer, not on the ground where the viewer resides or is otherwise present when viewing the forecast.
Factors such as differences in temperature and pressure at ground level and at elevations above ground level often drastically effect the prevailing weather conditions for those locations. Accordingly, weather radar systems are limited in the amount of relevant information they can provide the average citizen. Thus, while it may not be prudent for an aircraft to travel through the weather system depicted on a viewer's television screen, in actuality, it may be perfectly calm on the ground below the weather system graphically depicted on that viewer's television screen.
What is needed therefore, but currently unavailable in the art, is a system and method for providing real-time weather information and forecasts relating to weather phenomenon and weather systems from the ground up. More specifically, there is a need for a system and method for distributing in situ observations from a plurality of remote locations so that video broadcast viewers and/or the remote locations can obtain ground level information pertaining to prevailing weather conditions at the remote locations. The ground level information obtained from remote sensing units may be displayed in a video broadcast or otherwise in conjunction with weather information obtained from radar, satellites, and/or other sources for geographic areas corresponding to the locations of the remote sensing units so that a substantially complete picture of the prevailing weather conditions for a given location within the geographic area can be conveyed to viewers in that geographic area. Such a system and method should be capable of substantially real-time delivery, reliable in operation, accurate, expandable with respect to area

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Real-time site specific weather information distribution... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Real-time site specific weather information distribution..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Real-time site specific weather information distribution... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3081670

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.