Real-time monitoring of PCR using LOCI

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S005000, C435S006120, C435S091100, C435S091200, C536S024300, C536S024320

Reexamination Certificate

active

06346384

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to methods for determining the presence of a target polynucleotide in a sample. In particular, this invention relates to methods for determining the presence of a target polynucleotide by real-time monitoring of an amplification reaction, preferably the polymerase chain reaction (PCR) using luminescent oxygen channeling immunoassay (LOCI) technology.
BACKGROUND OF THE INVENTION
The sensitive detection of nucleic acids in a clinical sample opened a new era in the diagnosis of infectious diseases and other fields. Powerful nucleic acid amplification and detection methods are available which allow the detection of very small copy numbers of target polynucleotides. Tremendous progress has been made concerning the qualitative detection of nucleic acids, but the quantitative detection is still a challenge for the existing methods, especially for amplification methods based on the exponential amplification of a target polynucleotide. The best known amplification method of this type is the polymerase chain reaction (PCR). U.S. Pat No. 4,683,195; U.S. Pat No. 4,683,202.
Nucleic acids in a sample are usually first amplified by the amplification method and subsequently detected by the detection method. This sequential approach is based on a single end-point measurement after the amplification reaction is completed. The amount of amplified product observed at the end of the reaction is very sensitive to slight variations in reaction components because the amplification reaction is typically exponential. Therefore, the accuracy and precision of quantitative analysis using endpoint measurements is poor. Furthermore, endpoint measurements can produce a hook effect whereby high concentrations of a target polynucleotide to be amplified yield inaccurately low values.
In contrast to end-point determinations of amplified polynucleotides, real-time monitoring of amplification reaction product generation offers the possibility of better precision and accuracy in quantitative measurements because the measurements are taken during the exponential phase of the amplification process. In contrast to classical end-point measurements, multiple measurements are taken during real-time monitoring. During the exponential phase of the amplification process, none of the reaction components are limiting, and therefore the affect on accuracy of reaching a maximum signal are eliminated. Real-time monitoring of PCR is based on kinetic measurements offering a better and a more complete picture of the PCR process. A number of real-time monitoring methods have been developed, however the methods use fluorescent signals in all cases. This limits the earliest possible detection of amplifying DNA (RNA) because of the presence of unquenched or background fluorescence. The LOCI signal can be detected well before the fluorescent signal of, for instance, Roche's TaqMan® fluorescent signal. See Heid et al., (1996)
Genome Res.,
Vol. 6(10), pp. 986-994.
Nadau et al., U.S. Pat. No. 5,547,861 and Walker et al. U.S. Pat. Nos. 5,593,867 and 5,270,184, disclose a method for amplifying a target polynucleotide sequence called strand displacement amplification (“SDA”) and methods for detecting amplification products, including a real-time detection method using fluorescence polarization. In SDA temperature cycling is not required. Instead, the method relies on the ability of restriction enzymes to nick hemimodified DNA and relies on DNA polymerase to synthesize a complementary polynucleotide strand from the nick. Detection systems developed for SDA utilize displacement of a fluorescently-labeled detector probe DNA for real-time monitoring of the amplification reaction. A possible disadvantage of this system is that the probe is also a primer and any false priming (“mispriming”) of this probe could lead to false positive signal generation. In contrast, the LOCI probes used herein are blocked at the 3′ terminal end and cannot be primers.
Numerous dyes have been developed for the detection of nucleic acids to detect a target polynucleotide after it has been amplified. For example, L. Lee et al., U.S. Pat. Nos. 5,863,727 and 5,800,996, describe fluorescent energy-transfer dyes, linkers for synthesizing these dyes, and methods that utilize the dyes. The patents describe the use of the dyes in nucleic acid reactions, including use of the dyes to detect the products of PCR reactions, after the end-point of a reaction and separation by electrophoresis. U.S. Pat. No. 5,863,727 col. 46 line 54. These patents do not disclose the used of the dyes in real-time monitoring of amplification products.
Chemiluminescent dyes, such as luminol and acridinium, and detection systems have been developed which offer the advantage of increased sensitivity over fluorescent systems. M. Lee et al., U.S. Pat No. 5,672,475 ('475 patent), disclose a method for performing end-point measurements of two substances, which theoretically could be polynucleotides, using two chemiluminescent conjugates. An essential feature of the invention of the '475 patent is that each chemiluminescent molecule, eg. luminol and acridinium, is activated under a different set of conditions. The assay disclosed in the '475 patent cannot be used to measure PCR reaction kinetics because the reactions require a separation step to remove unbound labeled conjugate, and therefore are not amenable to an all-in-one-tube assay. In addition, the assay method cannot be used in kinetic measurements of PCR reactions because the measurements require substantial changes in the reaction mixture to activate the chemiluminescent label, which are likely to affect the PCR reaction.
Law et al. U.S. Pat. Nos. 5,879,894, 5,395,752, and 5,702,887 (“Law patents”) describe test methods and long-emission wavelength chemiluminescent compounds for detecting two test substances in a single assay. U.S. Pat. No. 5,702,887 briefly mentions the use of two chemiluminescent compounds as labels in an amplification assay such as polymerase chain reaction (“PCR”) (Col. 42, lines 31-57). However, although the disclosure indicates that the method could be used to quantitatively measure PCR products, it does not disclose the use of the method to make kinetic measurements of PCR reactions. In fact, the Law patents provide no examples of assays using the disclosed chemiluminescent compounds to measure polynucleotides. Luminescent oxygen channeling Immunoassays (LOCI) have been developed which offer the ability to measure large analytes, such as polynucleotides, with increased sensitivity in a homogeneous or heterogeneous format without the need of adding chemical reagents or heating the reaction to activate the luminescent compounds. U.S. Pat. No. 5,340,716, (Ullman, et al. 1994) (incorporated herein by reference). In LOCI a group which is bound to a specific binding pair member, such as a polynucleotide, is photochemically activated to a luminescent product and is used as a labeled reagent in assays for detection of an analyte, such as a target polynucleotide. The photochemical activation occurs by reaction with singlet oxygen that is generated by photochemical activation of a sensitizer. In the assay protocol the components are combined and the light produced after irradiation of the luminescent product is a function of analyte concentration.
The LOCI method was designed for the analysis of nucleotides in an end-point hybridization reaction. No study has suggested the use of LOCI in real-time monitoring of amplification reactions. It was possible that the kinetics of LOCI hybridization reactions, which involve hybridizations involving bead-coupled probes would be too slow to allow monitoring a PCR reaction. Moreover, the deleterious effect of singlet oxygen on DNA probes makes it problematic that LOCI utilizing a DNA probe would be effective after numerous, repeated illuminations. Finally, temperatures which allow formation of the LOCI complex on target DNA could have allowed unacceptable levels of mispriming, but this is not the case.
There remains a need fo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Real-time monitoring of PCR using LOCI does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Real-time monitoring of PCR using LOCI, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Real-time monitoring of PCR using LOCI will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2936913

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.