Real time epitaxial growth of vertical cavity...

Semiconductor device manufacturing: process – Including control responsive to sensed condition – Optical characteristic sensed

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S014000, C438S022000

Reexamination Certificate

active

06410347

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor technology, more particularly to an epitaxial growth system for a surface emitting laser using a real time laser reflectometry apparatus and a method for manufacturing a surface emitting laser using it.
The growth of electron and photon structure related epitaxial layer over GaAs or InP substrates using MOCVD method, which is a method for growing semiconductor hetero-thin-film, has been widely studied up to now, and it is also prospected to be studied from now on in order to develop a more improved element.
VCSEL(Vertical-Cavity Surface Emitting Laser) is a semiconductor laser developed in the latter part of 1980's, which is manufactured based on a new concept.
Other conventional lasers are a edge-emitting laser, in which the laser beam is emitted from the cross section of semiconductor substrate. In contrast, VCSEL is a surface emitting laser, in which the laser beam is emitted from the surface of semiconductor substrate. The VCSEL has many advantages for example, low threshold current, high integration capability and high power in array type, so that it is spotlighted as the next-generation light source. The quality of such VCSEL device depends on the uniformity of thickness of DBR (Distributed Bragg Reflector) which is the basic structure therefor. The entire thickness of VCSEL structure is much higher than that of the conventional edge-emitting laser due to the characteristics of the DBR(Distributed Bragg Reflector) structure, so that the growth thereof may be in trouble. For example, the long-time growth required for VCSEL may cause some problems in uniformity and reproducibility of the thickness of epitaxially grown layers, which are the most challenging problems being studied for the VCSEL structure.
According to one conventional method for growing VCSEL structure, multiple material layers used for composing a DBR epi-layer and a cavity epi-layer are formed separately by epitaxial growing method and then the thickness of the material layers are measured by an electron microscope so as to estimate the epitaxially growing speed of respective layers. Upon the estimated growing speed, the time durations required for forming the desired thickness of the material layers within the DBR and the cavity layers are determined. This method has a problem in that the weak reproducibility of the growing equipment may make it impossible to obtain a designed uniform epi-layers since the conditions of growth equipment are not typically maintained uniform for a long time.
In accordance with another conventional technology, the reproducibility of the growing thickness have been more or less improved by a real time laser reflectometry. In other words, the development of a real time laser reflectometry make it possible to know the growing speeds of epi-layers in-situ fabrication even though the unstableness of the environment within the growing equipment is more or less weak. Specifically, the growing time duration of a DBR layer can be controlled in real time so as to obtain the desired thickness of DBR layer as it has been designed. However, in order to use this method the index of refraction of the layer being grown should be known in advance. This is because the index of refraction of epi-layer is required for calculating a growing speed in real time. Thus, there is a problem in that an additive and interruptive step for measuring a index of refraction of the material used in epitaxial growing, must be undesirably required for measuring a growing speed, if the index of refraction of the material is not known in advance.
SUMMARY OF THE INVENTION
Accordingly, the object of the present invention is to provide an epitaxial growing system of surface emitting laser and a method for manufacturing it, in which the reproducibility of the epi-layers in thickness can be achieved without any information on the index of refraction and/or the growing speed of epitaxial material layers in advance.
To achieve the above object, the present invention uses a measuring laser beam in laser reflectometry, the wavelength of which is substantially the same with the wavelength of VCSEL and a reflected wavelength of DBR, for eliminating the need of knowledge of index of refraction and growing speed in advance. If the same wavelength is selected, the middle step required for physical property analysis can be omitted. Also, two laser, one is main and the other is subsidiary, may be used for improving precision, in order to eliminate the need of epitaxially growing the buffer layer. The laser reflectometry can calculate the growing speed of epitaxial layer in situ-fabrication by using a pre-calculated period of a reflected signal from the buffer, if the apparatus is given in advance with the index of refraction of the epitaxial layer. The DBR structure is a designed structure so that the reflectance thereof in a special wavelength is nearly set to 1. The VCSEL structure includes a cavity layer between such lower and upper DBR structures.
The present invention is devised based on that the wavelength of the laser used for measurement are selected to be the same with those of DBR and VCSEL so as to perform a real time epitaxial growth without the need of pre-knowledge of the index of refraction thereof. The two lasers having different wavelengths are used so as to perform a real time epitaxial growth of an unknown refractive index material of DBR without any buffer layer grown.
To achieve the object of the present invention, there is provided an epitaxial growing system for a surface emitting laser including a plurality of material layers, with a reactor for epitaxial growth, comprising: a measuring laser for applying a laser beam having the same wavelength with that of the surface emitting laser to a semiconductor structure being grown in the reactor, the semiconductor structure being fabricated to be the surface emitting laser; a detector for detecting a reflected signal of the measuring laser beam applied to the semiconductor structure; means for estimating at least one period each of which is the time duration required for growing a specific thickness of one of the material layers by performing an analysis of the reflected signal from the detector; and means for controlling growth time durations of respective material layer based on the result of the means for estimating.
In one preferred embodiment, the epitaxial growing system further includes an analog to digital converter for receiving an output of the detector and the measuring laser is substantially composed of a diode laser having a wavelength of 1.5 &mgr;m. Also, the detector may be a Ge detector.
According to another preferred embodiment, there is provided an epitaxial growing system for a surface emitting laser including a plurality of material layers, with an reactor for epitaxial growth, comprising: a main measuring laser for applying a first laser beam to a semiconductor structure in the reactor for measuring a reflectance of the semiconductor structure, wherein the semiconductor structure is fabricated to be the surface emitting laser, and a wavelength of the first laser beam is substantially the same with a wavelength of the surface emitting laser; a subsidiary measuring laser for simultaneously applying a second laser beam with the first laser beam to the semiconductor structure; a first detector for detecting a reflected signal of the main measuring laser; a second detector for detecting a reflected signal of the second laser beam; means for estimating at least one period each of which is the time duration required for growing a specific thickness of one of the material layers by performing an analysis of the reflected signal of the main measuring laser from the first detector and the reflected signal of the subsidiary measuring laser from the second detector; and means for controlling growth time durations of respective material layer based on the result of the means for estimating.
In a specific embodiment, the main measuring laser is substantially composed of a di

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Real time epitaxial growth of vertical cavity... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Real time epitaxial growth of vertical cavity..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Real time epitaxial growth of vertical cavity... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2892104

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.