Boring or penetrating the earth – With signaling – indicating – testing or measuring – Measuring or indicating drilling fluid rate of flow
Reexamination Certificate
1999-09-24
2001-10-30
Pezzuto, Robert E. (Department: 3671)
Boring or penetrating the earth
With signaling, indicating, testing or measuring
Measuring or indicating drilling fluid rate of flow
C073S152420
Reexamination Certificate
active
06308787
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates generally to the field of underground boring and, more particularly, to a closed-loop control system and process for controlling the operations of an underground boring machine in real-time.
Utility lines for water, electricity, gas, telephone and cable television are often run underground for reasons of safety and aesthetics. In many situations, the underground utilities can be buried in a trench which is then back-filled. Although useful in areas of new construction, the burial of utilities in a trench has certain disadvantages. In areas supporting existing construction, a trench can cause serious disturbance to structures or roadways. Further, there is a high probability that digging a trench may damage previously buried utilities, and that structures or roadways disturbed by digging the trench are rarely restored to their original condition. Also, an open trench poses a danger of injury to workers and passersby.
The general technique of boring a horizontal underground hole has recently been developed in order to overcome the disadvantages described above, as well as others unaddressed when employing conventional trenching techniques. In accordance with such a general horizontal boring technique, also known as microtunnelling, horizontal directional drilling (HDD) or trenchless underground boring, a boring system is situated on the ground surface and drills a hole into the ground at an oblique angle with respect to the ground surface. A drilling fluid is typically flowed through the drill string, over the boring tool, and back up the borehole in order to remove cuttings and dirt. After the boring tool reaches a desired depth, the tool is then directed along a substantially horizontal path to create a horizontal borehole. After the desired length of borehole has been obtained, the tool is then directed upwards to break through to the surface. A reamer is then attached to the drill string which is pulled back through the borehole, thus reaming out the borehole to a larger diameter. It is common to attach a utility line or other conduit to the reaming tool so that it is dragged through the borehole along with the reamer.
In order to provide for the location of a boring tool while underground, a conventional approach involves the incorporation of an active sonde disposed within the boring tool, typically in the form of a magnetic field generating apparatus that generates a magnetic field. A receiver is typically placed above the ground surface to detect the presence of the magnetic field emanating from the boring tool. The receiver is typically incorporated into a hand-held scanning apparatus, not unlike a metal detector, which is often referred to as a locator. The boring tool is typically advance by a single drill rod length after which boring activity is temporarily halted. An operator then scans an area above the boring tool with the locator in an attempt to detect the magnetic field produced by the active sonde situated within the boring tool. The boring operation remains halted for a period of time during which the boring tool data is obtained and evaluated. The operator carrying the locator typically provides the operator of the boring machine with verbal instructions in order to maintain the boring tool on the intended course.
It can be appreciated that present methods of detecting and controlling boring tool movement along a desired underground path is cumbersome, fraught with inaccuracies, and require repeated halting of boring operations. Moreover, the inherent delay resulting from verbal communication of course change instructions between the operator of the locator and the boring machine operator may compromise tunneling accuracies and safety of the tunneling effort. By way of example, it is often difficult to detect the presence of buried objects and utilities before and during tunneling operations. In general, conventional boring systems are unable to quickly respond to needed boring tool direction changes and productivity adjustments, which are often needed when a buried obstruction is detected or changing soil conditions are encountered.
During conventional horizontal and vertical drilling system operations, the skilled operator is relied upon to interpret data gathered by various down-hole information sensors, modify appropriate controls in view of acquired down-hole data, and cooperate with other operators typically using verbal communication in order to accomplish a given drilling task both safely and productively. In this regard, such conventional drilling systems employ an “open-loop” control scheme by which the communication of information concerning the status of the drill head and the conversion of such drill head status information to drilling machine control signals for effecting desired changes in drilling activities requires the presence and intervention of an operator at several points within the control loop. Such dependency on human intervention within the control loop of a drilling system generally decreases overall excavation productivity, increases the delay time to effect necessary changes in drilling system activity in response to acquired drilling machine and drill head sensor information, and increases the risk of injury to operators and the likelihood of operator error.
There exists a need in the excavation industry for an apparatus and methodology for controlling an underground boring tool and boring machine with greater responsiveness and accuracy than is currently attainable given the present state of the technology. There exists a further need for such an apparatus and methodology that may be employed in vertical and horizontal drilling applications. The present invention fulfills these and other needs.
SUMMARY OF THE INVENTION
The present invention is directed to systems and methods for controlling an underground boring tool. A control system of an underground boring machine receives data from sensors provided at the boring machine, at the boring tool, and optionally at an aboveground site separate from the boring machine location. Various sensors monitor boring machine activities, boring tool location, orientation, and environmental condition, geophysical and/or geologic condition of the soil/rock at the excavation site, and other boring control system activities. Data acquired by these sensors is processed by a boring machine controller to provide closed-loop, real-time control of a boring operation.
In general terms, the boring system comprises an apparatus for driving a boring tool along an underground path in a desired direction. The driving apparatus may, for example, comprise a rotation unit which includes a rotation unit sensor that senses a parameter of rotation unit performance. The rotation unit further includes a rotation unit control that moderates rotation unit performance. The driving apparatus may also comprise a displacement unit which includes a displacement unit sensor that senses a parameter of displacement unit performance. The displacement unit further includes a displacement unit control that moderates displacement unit performance. A boring tool is coupled to a drill pipe, also termed a drill string or drill stem. The drill is coupled to the rotation unit for rotating the boring tool and to the displacement unit for displacing the boring tool along an underground path.
An exemplary system and method for controlling an underground boring tool according to the principles of the present invention involves rotating the boring tool and sensing a parameter of boring tool rotation. The boring tool is also displaced in a forward or reverse direction relative to the boring machine and a parameter of boring tool displacement is sensed. A controller produces a control signal substantially in real-time in response to the detected boring tool location and the sensed boring tool rotation and displacement parameters. The control signal is applied to one or both of the boring tool rotation and displacement pumps or motors so as to control one or both of a rate and a d
Altera Law Group LLC
Pezzuto Robert E.
Vermeer Manufacturing Company
LandOfFree
Real-time control system and method for controlling an... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Real-time control system and method for controlling an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Real-time control system and method for controlling an... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2601115