Reagents and methods useful for detecting diseases of the...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S091100, C435S320100, C435S325000, C435S352000, C435S363000, C435S366000, C435S252300, C536S023100

Reexamination Certificate

active

06368792

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates generally to detecting diseases of the gastrointestinal tract organs, and more particularly, relates to reagents such as polynucleotide sequences and the polypeptide sequences encoded thereby, as well as methods which utilize these sequences, which are useful for detecting, diagnosing, staging, monitoring, prognosticating, preventing or treating, or determining predisposition to diseases and conditions of the GI tract such as cancer.
The organs of the GI tract include the esophagus, stomach, small and large intestines, rectum and pancreas. Of the approximately 225,900 new cases of GI tract cancer projected for the United States during 1996, 131,200 will be due to colorectal cancer. Further, GI tract cancers will account for approximately 127,070 related deaths (American Cancer Society statistics). In addition to its high incidence, GI tract cancers can be extremely lethal; for example, greater than 97% of pancreatic cancer patients will die of the disease. H. J. Wanebo, et al.,
Cancer
78:580-91 (1996).
Generally, the early detection of GI tract cancers at a pre-invasive stage dramatically reduces disease-related mortality. However, only few GI tract cancers are detected at this stage. For example, only 37% of colorectal cancers are detected at this stage by screening for premalignant polyps which can be removed before they progress to cancer. The primary methods used for colorectal cancer screening are fecal occult blood testing (FOBT) and flexible sigmoidoscopy. A. M. Cohen et al. In:
Cancer: Principles and Practice of Oncology
, Fourth Edition, pp. 929-977, Philadelphia, Pa.: J/B. Lippincott Co. (1993). Although FOBT is noninvasive, simple and inexpensive, its sensitivity is low; for example, sensitivity for detecting colorectal cancer was only 26% in one study. D. A. Ahlquist et al.,
JAMA
269: 1262-1267 (1993). Further, although flexible sigmoidoscopy is highly sensitive for detecting early cancer and precursor polyps, it is invasive, costly, and too technically demanding to be used for routine screening. D. F. Ransohoff, et al.,
JAMA
269: 1278-1281 (1993). In addition, only eight percent (8%) of pancreatic cancers and eighteen percent (18%) of stomach cancers are detected at a pre-invasive stage (American Cancer Society statistics). Thus, the need exists for improved screening methods for detection of GI tract diseases such as cancer.
The standard procedures currently used for establishing a definitive diagnosis for a GI tract cancer include barium studies, endoscopy, biopsy and computed tomography (CT). These procedures are invasive and costly. Moreover, an erroneous diagnosis can result from any of these procedures due to technical reasons, the subjective interpretation of results, or lack of sensitivity of the procedure. M. F. Brennan, et al. In:
Cancer: Principles and Practice of Oncology
, Fourth Edition, pp. 849-882, Philadelphia, Pa.: J. B. Lippincott Co. (1993).
After the diagnosis of a particular GI tract cancer is confirmed, staging is performed to determine the anatomic extent of the disease. Staging is performed by a pathologist on tissue obtained by biopsy and/or surgery. Accurate staging is critical for predicting patient outcome and providing criteria for designing optimal therapy. Inaccurate staging can result in poor therapeutic decisions and is a major clinical problem in colorectal cancer. A need therefore exists for more sensitive diagnostic procedures for staging GI tract cancers.
While surgical resection of the affected organ is typical therapy for a majority of patients diagnosed with GI tract cancers, some patients undergo radiation and/or chemotherapy. All of these patients need to be monitored in order to evaluate their response to therapy and to detect persistent or recurrent disease and distant metastasis. A variety of markers including CEA and CA 19-9 can be assayed and the assay results used to monitor a patient's progress in conjunction with radiological procedures and colonoscopy. E. L. Jacobs,
Curr. Probl. Cancer
15 (6):299-350 (1991). These monitoring techniques, however, have failed to provide an accurate and effective means to monitor the progress of these patients.
Assays based upon the appearance of various disease markers in test samples such as blood, plasma or serum obtained by minimally invasive techniques, could provide low-cost and accurate information to aid the physician in diagnosing disease such as cancer, in selecting a therapy protocol, and in monitoring the success of the chosen therapy. Such markers have been placed into several categories. The first category contains those markers which are elevated in disease. Examples include human chorionic gonadotropin (hCG) which is elevated in testicular cancer and trophoblastic disease, and alpha fetoprotein (AFP) which is elevated in hepato-cellular carcinoma (HCC). E. L. Jacobs, supra. The second category includes qualitatively altered mRNA or protein markers in disease. Examples include mRNA splice variants of CD 44 in bladder cancer and mutations in p53 protein in lung and colorectal cancer. Y. Matsumura et al.
Journal of Pathology
175(Suppl): 108A (1995); W. P. Bennett,
Cancer Detection and Prevention
19 (6): 503-511 (1995). The third category includes those protein markers which are normally expressed in a specific tissue, organ or organ system but which appear in an inappropriate body compartment. For example, prostate specific antigen (PSA) is a normal protein which is secreted at high levels into the seminal fluid. PSA is present in very low levels in the blood of men with normal prostates but markedly elevated in the blood of patients with diseases of the prostate, including benign prostatic hyperplasia (BPH) and adenocarcinoma of the prostate. At high levels in the blood, PSA is a strong indicator of prostate disease. P. H. Lange et al.,
Urology
33 (6 Suppl): 13 (1989). Similarly, carcinoembryonic antigen (CEA) is a normal component of the inner lining of the colon which is present in blood at low levels in people without colon disease. E. L. Jacobs, supra. However, the CEA concentration is markedly elevated in the blood, plasma or serum of many patients diagnosed with colon disease including inflammatory bowel disease and adenocarcinoma of the colon, and is used as an indicator of colorectal disease.
There are yet other examples of detecting disease markers in an inappropriate bodily compartment. In the case of metastatic cancer, the blood, bone marrow or lymph nodes may contain cells which have originated from the primary tumor and which may express mRNA or protein markers representative of the primary tumor. For example, CEA and PSA have been demonstrated immunohistochemically in lymph nodes or bone marrow of patients with metastatic colorectal cancer and prostate cancer, respectively. B R. Davidson, et al.,
Cancer
65:967-970 (1990); J. L. Mansi, et al.,
J. Urol.,
139:545-548 (1988). In addition, RT-PCR has detected CEA and PSA mRNAs at distant sites in patients with colon and prostate cancer, suggesting the presence of metastatic cells. M. Gerhard, et al.,
J. Clin. Oncol.
12:725-729 (1994); A. E. Katz, et al.,
Urology
43:765-775 (1994). Other compartments in which the inappropriate appearance of normal gene products may be indicative of disease include but are not limited to, whole blood, urine, saliva, and stool. Currently, no universally acceptable marker(s) exist(s) for the early detection of pancreatic, stomach, and esophageal cancers. Further, improved markers are needed to detect colorectal cancer.
It therefore would be advantageous to provide specific methods and reagents for detecting, diagnosing, staging, monitoring, prognosticating, preventing or treating, or determining predisposition to diseases and conditions associated with the GI tract or to indicate possible predisposition to these conditions. Such methods would include assaying a test sample for products of a gene which are overexpressed in GI tract diseases and conditions such as cancer. Such methods may also include as

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reagents and methods useful for detecting diseases of the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reagents and methods useful for detecting diseases of the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reagents and methods useful for detecting diseases of the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2921097

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.