Reagents and methods for diagnosing, imaging and treating...

Drug – bio-affecting and body treating compositions – Radionuclide or intended radionuclide containing; adjuvant... – Attached to antibody or antibody fragment or immunoglobulin;...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C435S007200, C435S007210, C435S007900, C435S007930, C435S007920, C435S007940, C436S512000, C436S518000, C436S533000, C436S540000, C436S548000, C436S808000, C436S809000, C436S811000, C424S178100, C424S179100, C530S300000, C530S350000, C530S387100, C530S388250, C530S391100, C530S391300, C530S807000

Reexamination Certificate

active

06716410

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention herein relates to a novel human monoclonal antibody fragment (Fab), cloned by phage display that binds specifically to oxidized forms of low density lipoproteins (OxLDL) and not native LDL. More particularly, it relates to the use of the antibody for improved methods of diagnosis and treatment of atherosclerosis.
2. Description of Prior Art
Atherosclerosis is a chronic inflammatory disease that results from hyperlipidemia and a complex interplay of a variety of environmental, metabolic and genetic risk factors. The oxidation of low density lipoprotein (LDL) plays a central, if not obligatory role, in the atherogenic process. Early studies showed that acetylation of LDL greatly enhanced its uptake by macrophges and that the uptake occurred via “scavenger receptors” which were distinct from the classical LDL receptor. Unlike most receptors, these scavenger receptors were not downregualted following uptake of OxLDL. Due to the excessive uptake of OxLDL and its associated lipid by the macrophages, the cells obtained a characteristic foam-like appearance. The appearance of such cells is one of the first hallmarks of atherosclerotic disease. Foam cells accumulate within the intima (under the endothelial lining) of the vessel walls where they become unstable and plaques, the hallmarks of more advanced disease. Inflammatory conditions develop leading to the development of complicated lesions.
There is much evidence that OxLDL contributes to atherogenesis by a number of mechanisms. The oxidation of polyunsaturated fatty acids in phospholipids of lipoproteins generates many breakdown products such as malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and other reactive moieties attached to oxidized phospholipids. Many of these intermediate products are highly reactive and can interact with lysine residues of associated proteins and phospholipids to generate various adducts. These adducts are known to occur in vivo and are immunogenic. In murine models of atherosclerosis, such as apo-E deficient mice (ApoE
−/−
) mice, atherosclerosis is correlated with the development of high titers of autoanitbodies to varous oxidation specfic epitopes of OxLDL. The consequences of such cellular and humoral responses are still poorly understood, but under certain conditions they can clearly modify the natural history of the disease.
It is generally accepted that it is the composition of atherosclerotic lesions, in particular the content of lipids, OxLDL, foam cells, and smooth muscle cells, that determines their properties. Foam cells are often found in the sites of lesion that are susceptible to rupture. Activated macrophages recruited to clear the apoptotic and necrotic foam cells, as well as OxLDL, secrete factors that weaken the plaque. Human pathology studies have shown that atheromas containing a large necrotic core, thin fibrous cap and large numbers of macrophage/foam cells in the shoulder are more predisposed to plaque rupture and thrombosis. These lesions, which frequently appear as mild or moderate coronary stenoses in angiographic studies, are characterized pathologically as large atheroma with extensive lipid pools exceeding 40% of plaque areas. Angiography only provides a measure of arteial lumen, but fails to detect vessel wall pathology. Diagnostic methods that provide a measure of the overall extent of the atherosclerotic lesion, with an emphasis on OxLDL and lipid content, would therefore be desirable. Moreover, the lipid core of atheromas can be assumed to contain extensive oxidized lipids that accumulated within foam cells and set free when cells undergo necrosis and apoptosis.
Non-invasive detection of atherosclerotic lesions is currently not clinically feasable. The gold standard for diagnosing atherosclerosis is angiography which detects abnormal vessel lumen contours caused by encroaching atherosclerosis but does not directly identify abnormalities of the vessel wall. The widely recognized limitations of angiography include poor correlation with functional stenosis, interobserver and intraobserver variability, underestimation of the extent of disease because of diffusely atherosclerotic vessels, and arterial remodeling. B mode and ultravascular ultrasonography can detect intima/media thickening and calcification of vascular walls, but cannot clearly assess specific tissue characteristics. Electron beam computed tomography detects only calcium in vessel walls. Magnetic resonance imaging is still an investigational tool for the detection of plaque components.
Human studies have suggested that plaque rupture frequently occurs in nonangiographically significant lesions that contain abundant lipid-laden macrophages and large lipid pools within atheromas. Therefore imaging of atherosclerosis directed at lipid rich areas would be of value, not only in detecting the extent of lesion burden, but also in the detecting clinically silent but “active” lesions. Previous radioscintographic imaging agents have been limited by poor specificity, low in vivo uptake in atherosclerotic plaque, and slow elimination from the circulation, resulting in poor lesion/background ratios. Various imaging agents have been used including radiolabeled LDL, fragments of apolipoprotein B, autologous platelet and antiplatelet antibodies, non-specific antibodies and Fc fragments, hematoporphyrin derivatives, and anti-malonic acid monoclonal antibodies (Mabs).
OxLDL specific antibodies have been isolated from human and rabbit atherosclerotic lesions which contain tightly bound IgGs that recognize epitopes of OxLDL in vitro and stains atherosclerotic lesions in vitro. Mouse hybridoma cell lines have been generated for the production of Mabs against OxLDL and the antibodies were found to bind specifically to oxidized, rather than native phospholipids. However all of the antibodies previously described were monospecific, binding to only one form of OxLDL. The EO series of mouse Mabs described by Palinski et al. (1996), were able to bind either OxLDL or MDA-LDL, not both. Similarly, MDA2 and NA59, mouse Mabs described in other studies, bind MDA-LDL and HNE-LDL respectively. Most importantly, these mouse antibodies are limited in their usefulness for human applications in vivo as they illicit an immune response that prohibits their repeated administration.
Hybridoma technology, which is widely used in generating murine Mabs, is less successful in producing human hybridomas. Epstein Barr Virus (EBV) may be used to immortalize human lymphocytes, however due to the wide variety of neoepitopes in OxLDL, acquisition of human Mabs to many different epitopes would be arduous. Furthermore, clones derived by this technique are frequently unstable and low secretors. Additionally, the EBV-transformants produce IgM antibodies, while anti-OxLDL antibodies can be both IgG and IgM isotypes.
Phage display combinatorial library technology provides a useful method to generate human Mabs (Barbas and Lerner, 1991; Huse, et al., 1989). The libraries made from lymphocyte mRNA may consist of up to 10
8
recombinants of monoclonal Fab repertoires. By displaying the library on a filamentous phage surface and panning against a model epitope, monoclonal Fab antibodies can be selected and analyzed for their immunological properties and biological activities. Fabs are ideal for use in both therapeutic and diagnostic methods as they can be produced in large quantities inexpensively and they are innately non-immunogenic. Additionally, they are not whole antibody molecules which can initiate a cascade of immune responses upon binding to their antigen.
SUMMARY OF THE INVENTION
The invention herein is the discovery of an antibody that binds to a novel epitope of OxLDL and MDA-LDL, but not native LDL, and its uses in imaging of atherosclerotic plaques, as a means for targeting therapeutics, and as a therapeutic itself or model structure for the development of novel therapeutics for the treatment of atherosclerosis.
The invention is the discovery of a cloned human monoclonal Fab i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reagents and methods for diagnosing, imaging and treating... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reagents and methods for diagnosing, imaging and treating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reagents and methods for diagnosing, imaging and treating... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3211502

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.