Read head with leads to shields shorts for permitting a...

Dynamic magnetic information storage or retrieval – Head – Magnetoresistive reproducing head

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06473277

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a read head with leads to shields shorts for permitting a thinner second read gap layer and improving read signal symmetry and, more particularly, to such a read head wherein the first and second shield layers are extensions of the first and second lead layers.
2. Description of the Related Art
The heart of a computer is an assembly that is referred to as a magnetic disk drive. The magnetic disk drive includes a rotating magnetic disk, a slider that has read and write heads, a suspension arm above the rotating disk and an actuator that swings the suspension arm to place the read and write heads over selected circular tracks on the rotating disk. The suspension arm biases the slider into contact with the surface of the disk when the disk is not rotating but, when the disk rotates, air is swirled by the rotating disk adjacent an air bearing surface (ABS) of the slider causing the slider to ride on an air bearing a slight distance from the surface of the rotating disk. When the slider rides on the air bearing the write and read heads are employed for writing magnetic impressions to and reading magnetic signal fields from the rotating disk. The read and write heads are connected to processing circuitry that operates according to a computer program to implement the writing and reading functions.
An exemplary high performance read head employs a spin valve sensor for sensing the magnetic signal fields from the rotating magnetic disk. The sensor includes a nonmagnetic electrically conductive spacer layer sandwiched between a ferromagnetic pinning layer and a ferromagnetic free layer. An antiferromagnetic pinning layer interfaces the pinned layer for pinning the magnetic moment of the pinned layer 90° to an air bearing surface (ABS) wherein the ABS is an exposed surface of the sensor that faces the rotating disk. First and second leads are connected to the spin valve sensor for conducting a sense current therethrough. A magnetic moment of the free layer is free to rotate upwardly and downwardly with respect to the ABS from a quiescent or zero bias point position in response to positive and negative magnetic signal fields from the rotating magnetic disk. The quiescent position of the magnetic moment of the free layer, which is preferably parallel to the ABS, is when the sense current is conducted through the sensor without magnetic field signals from the rotating magnetic disk. If the quiescent position of the magnetic moment is not parallel to the ABS the positive and negative responses of the free layer will not be equal which results in read signal asymmetry which is discussed in more detail hereinbelow.
The thickness of the spacer layer is chosen so that shunting of the sense current and a magnetic coupling between the free and pinned layers are minimized. This thickness is typically less than the mean free path of electrons conducted through the sensor. With this arrangement, a portion of the conduction electrons is scattered by the interfaces of the spacer layer with the pinned and free layers. When the magnetic moments of the pinned and free layers are parallel with respect to one another scattering is minimal and when their magnetic moments are antiparallel scattering is maximized. An increase in scattering of conduction electrons increases the resistance of the spin valve sensor and a decrease in scattering of the conduction electrons decreases the resistance of the spin valve sensor. Changes in resistance of the spin valve sensor is a function of cos &thgr;, where &thgr; is the angle between the magnetic moments of the pinned and free layers. When a sense current is conducted through the spin valve sensor, resistance changes cause potential changes that are detected and processed as playback signals from the rotating magnetic disk. The sensitivity of the spin valve sensor is quantified as magnetoresistance or magnetoresistive coefficient dr/R where dr is the change in resistance of the spin valve sensor from muinimum resistance (magnetic moments of free and pinned layers parallel) to maximum resistance (magnetic moments of the free and pinned layers antiparallel) and R is the resistance of the spin valve sensor at minimum resistance. Because of the high magnetoresistance of a spin valve sensor it is sometimes referred to as a giant magnetoresistive (GMR) sensor.
The transfer curve for a spin valve sensor is defined by the aforementioned cos &thgr; where &thgr; is the angle between the directions of the magnetic moments of the free and pinned layers. In a spin valve sensor subjected to positive and negative magnetic signal fields from a moving magnetic disk, which are typically chosen to be equal in magnitude, it is desirable that positive and negative changes in the resistance of the spin valve read head above and below a bias point on the transfer curve of the sensor be equal so that the positive and negative readback signals are equal. When the direction of the magnetic moment of the free layer is substantially parallel to the ABS and the direction of the magnetic moment of the pinned layer is perpendicular to the ABS in a quiescent state (no signal from the magnetic disk) the positive and negative readback signals should be equal when sensing positive and negative fields that are equal from the magnetic disk. Accordingly, the bias point should be located midway between the top and bottom of the transfer curve. When the bias point is located below the midway point the spin valve sensor is negatively biased and has positive asymmetry and when the bias point is above the midway point the spin valve sensor is positively biased and has negative asymmetry. The designer strives to improve asymmetry of the readback signals as much as practical with the goal being symmetry. When the readback signals are asymmetrical, signal output and dynamic range of the sensor are reduced.
V
1
-
V
2
max



(
V
1



or



V
2
)
For example, +10% readback asymmetry means that the positive readback signal V
I
is 10% greater than it should be to obtain readback symmetry. 10% readback asymmetry is acceptable in many applications. +10% readback asymmetry may not be acceptable in applications where the applied field magnetizes the free layer close to saturation. In these applications +10% readback asymmetry can saturate the free layer in the positive direction and will reduce the negative readback signal by 10%. An even more subtle problem is that readback asymmetry impacts the magnetic stability of the free layer. Magnetic instability of the free layer means that the applied signal has disturbed the arrangement or multiplied one or more magnetic domains of the free layer. This instability changes the magnetic properties of the free layer which, in turn, changes the readback signal. The magnetic instability of the free layer can be expressed as a percentage increase or decrease in instability of the free layer depending upon the percentage of the increase or decrease of the asymmetry of the readback signal. Standard deviation of the magnetic instability can be calculated from magnetic instability variations corresponding to multiple tests of the free layer at a given readback asymmetry. There is approximately a 0.2% decrease in standard deviation of the magnetic instability of the free layer for a 1% decrease in readback asymmetry. This relationship is substantially linear which will result in a 2.0% reduction in the standard deviation when the readback asymmetry is reduced from +10% to zero. The magnetic instability of the free layer is greater when the readback asymmetry is positive than when the readback asymmetry is negative.
The location of the transfer curve relative to the bias point is influenced by three major forces on the free layer of a spin valve sensor, namely a ferromagnetic coupling field H
FC
between the pinned layer and the free layer, a net demagnetizing (demag) field H
D
from the pinned layer, and a net sense current field H
I
from

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Read head with leads to shields shorts for permitting a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Read head with leads to shields shorts for permitting a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Read head with leads to shields shorts for permitting a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2967334

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.