Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – Including solid reactant and means charging solids into – or...
Reexamination Certificate
1999-05-11
2002-06-25
Johnson, Jerry D. (Department: 1764)
Chemical apparatus and process disinfecting, deodorizing, preser
Chemical reactor
Including solid reactant and means charging solids into, or...
C422S145000, C422S219000
Reexamination Certificate
active
06409977
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a device and to a method of using the same for loading a multi-tube reactor with solid particles, in particular catalyst particles.
BACKGROUND OF THE INVENTION
A so-called multi-tube reactor is in essence a shell-and-tube exchanger containing up to several thousands or even tens of thousands of substantially vertical reactor tubes inside its shell, each reactor tube containing a fixed bed of catalyst particles and being cooled externally by a fluid circulating between the tubes in the shell. Multi-tube reactors are used for highly exothermic reactions, such as the epoxidation of ethylene. While the cross-sections of the reactor tubes are relatively small (such as 20-50 mm), their length is great (such as 1.5 to 20 m) Inside the reactor shell, the reactor tubes are held together by an upper and a lower tube sheet. Above the tube sheet, the reactor hell forms an upper dome in which maintenance work can be performed, such as the loading and re-loading of the reactor tubes with catalyst. In some reactors the upper dome is removable.
The loading or re-loading of the multitude of narrow and elongated reactor tubes with catalyst, the particles of which are generally not very much smaller than the inner diameter of the tubes, is difficult and time-consuming. An even distribution of the catalyst particles inside each tube and between all tubes is very important but difficult to achieve. During loading it is essential that the number of particles entering the reactor tube at the same time, multiplied by their greatest dimension, be small enough in relation to the internal diameter of the reactor tube so as to avoid the condition known as “bridging.” “Bridging” occurs when several particles enter and fall down the tube simultaneously, wedge together part way down the tube and leave a void space below them—resulting in unevenly and incompletely loaded tubes. When loading the elongated reactor tubes described above, it is best to ensure that the particles enter these tubes one by one. A further requirement, in particular in the ethylene epoxidation reaction which involves gaseous reactants and which is very exothermic, is that a small upper portion of each reactor tube is kept free of catalyst.
In the past it was conventional to place, in effect, a funnel at the upper end of each reactor tube and pour the particles into the individual tubes. Such a procedure is unacceptable today because of the large number of tubes which have to be filled.
U.S. Pat. No. 3,223,490, issued Dec. 14, 1965, discloses a reactor tube loader which comprises (a) a perforated plate which rests on the reactor tubes, the perforations corresponding to the pattern and spacing of the reactor tubes; and (b) fill tubes, one for each reactor tube, which nest in the perforated plate and extend into the corresponding reactor tubes. In operation, catalyst is dumped onto the perforated plate and the plate is shaken by a vibrating mechanism, causing the catalyst particles to pass one by one through the fill tubes and into the reactor tubes. The same publication adds that the fill tubes may be made of such length that when they are loaded to their top with catalyst and then removed from the reactor tubes, their content fills the reactor tubes up to a predetermined point below the top thereof.
GB-B-2186209, issued Feb. 1, 1989, also discloses a reactor tube filling device consisting of a plate resting on the reactor tubes and fill tubes nesting in the plate and extending into the corresponding reactor tubes. The differences with the first document are that the fill tubes are firmly connected to the plate and that a vibrating mechanism is not mentioned. The function of the device according to this document is to ensure that all reactor tubes are filled to a fixed level below their top. The phenomenon of bridging is not mentioned.
The above catalyst loading devices have serious disadvantages. In particular, they are inflexible in that a plate and its associated filling tubes can only be used in a multi-tube reactor of the same size and shape, having the same number, pattern, spacing and diameter of reactor tubes. They are also big, heavy and cumbersome to transport and to introduce into the upper reactor dome.
It is an object of the present invention to provide a much simpler and more flexible loading system for multi-tube reactors. This object is achieved by using a multitude of discrete polygonal plates as defined below, to close-pack the upper tube sheet in a two-dimensional array, i.e. to entirely cover any shape and size of upper tube sheet, in the same way as tiles are used to cover a floor. Together, the polygonal plates form an exceedingly simple and flexible multi-tube loading device.
SUMMARY OF THE INVENTION
The present invention provides a loading device for distributing solid particles into a multi-tube reactor in which the reactor tubes are substantially vertical and held together by an upper and a lower tube sheet, the loading device comprising a plurality of adjacent polygonal, i.e. triangular, quadrangular or hexagonal, plates, each polygonal plate having from 1 to 30 holes, each hole corresponding to one reactor tube, each hole having an diameter not greater than 95% of the inner diameter of the reactor tube and not smaller than 1.1 times the greatest dimension of a single particle to be loaded, the polygonal plates also comprising fixing means for holding the holes in correspondence with the respective reactor tubes.
The present invention also provides a method for loading solid particles into a multi-tube reactor, the reactor tubes having an inner diameter of at least 2 times the diameter of a single particle to be loaded therein, the reactor having an upper tube-sheet holding together the upper ends of the multitude of reactor tubes, the method comprising the following steps:
a) positioning a loading device on top of the upper tube-sheet, such that the combined polygonal plates substantially cover the upper tube-sheet and their holes correspond to the reactor tubes, wherein the loading device comprises a plurality of adjacent polygonal plates, each polygonal plate having from 1 to 30 holes, each hole corresponding to one reactor tube, each hole having an diameter not greater than 95% of the inner diameter of the corresponding reactor tube and not smaller than 1.1 times the greatest dimension of a single particle to be loaded into said reactor tube, the polygonal plates also comprising fixing means for holding the holes in correspondence with the respective reactor tubes;
b) pouring the particles over the combined polygonal plates covering the tube-sheet;
c) sweeping the particles through the holes in the plates into the respective reactor tubes, whereby the particles fill the reactor tubes in a uniform manner and bridging is avoided;
d) removing residual particles and any dust remaining on and between the rims; and
e) removing the loading device.
REFERENCES:
patent: 3223490 (1965-12-01), Thomas
patent: 3788370 (1974-01-01), Thomas
patent: 3829983 (1974-08-01), White
patent: 3913806 (1975-10-01), Red, Jr.
patent: 3956435 (1976-05-01), Svensson et al.
patent: 4368173 (1983-01-01), Jimenez et al.
patent: 4474404 (1984-10-01), Hagenbuch
patent: 5607893 (1997-03-01), Diekmann
patent: 2186209 (1987-08-01), None
Patent Absts. of Japan, vol. 98, No. 5, Apr. 30, 1998 & JP 10/024,232 (Asahi Chem. Ind. Co. Ltd.), Jan. 27, 1998.
Harper Jamie Stewart
Thew Karl Barry
Doroshenk Alexa A.
Johnson Jerry D.
Shell Oil Company
LandOfFree
Reactor tube loading device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Reactor tube loading device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reactor tube loading device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2964615