Organic compounds -- part of the class 532-570 series – Organic compounds – Azo
Reexamination Certificate
2001-11-08
2004-03-30
Powers, Fiona T. (Department: 1626)
Organic compounds -- part of the class 532-570 series
Organic compounds
Azo
C534S617000, C534S633000, C534S634000, C534S637000, C534S638000, C534S641000, C534S595000, C544S209000, C544S211000, C544S319000, C544S354000, C008S428000, C008S437000, C008S524000, C008S527000, C008S528000, C008S543000, C008S547000, C008S549000
Reexamination Certificate
active
06713613
ABSTRACT:
TECHNICAL FIELD
The present invention relates to reactive dye compounds. In particular the present invention relates to reactive dye compounds having improved dye-bath Exhaustion (E) and improved dye-fibre covalent Fixation (F).
BACKGROUND OF THE INVENTION
Reactive dye compounds are known in the art for dyeing various substrates. Such substrates include for example proteinaceous materials such as keratin, e.g. found in hair, skin and nails and various animal body parts such as horns, hooves and feathers, and other naturally occurring protein containing materials, e.g. silk and saccharide-derived materials such as those derived from cellulose or cellulose derivatives, e.g. natural products such as cotton, and synthetic fibres such as polyamides.
Examples of classes of such reactive dyes which are well known in the art include dyes containing a mono- or dichloro- or fluoro-1,3,5-triazinyl group, trichloro or mono- or di-fluoro-pyrimidyl group, beta-halogen-propionyl group, beta-halogenoethyl-sulphonyl group, beta-halogenoethylsulphamyl group, chloroacetyl amino, beta-(chloro-methyl)-beta-sulphatoethylsulphamyl group, or a vinyl sulphonyl group.
In the case of the dyes containing a triazinyl group or a pyrimidyl group, in place of the reactive halogen atoms one can use other groups which dissociate in the presence of alkali. Canadian Patent 771632, for example, discloses examples of such other groups including sulphonic acid, thiocyanate, sulphophenoxy, sulphophenyl thio, nitrosulphophenoxy groups, and quaternary ammonium groups.
“The Synthesis and Properties of some Triazine-Stilbene Fluorescent Brighteners”, I. Grabtchev, discloses the synthesis of certain triazine stilbene fluorescent brighteners containing methacrylic groups.
The Journal of Macromoleular Chemistry 64 (1977), 205-210 (Nr. 951) discloses the polymerisation of acrylonitrile in dimethylformamide in the presence of some unsaturated triazine derivatives. The Journal of Macromolecular Chemistry 50 (1976) 1-8 (Nr.728) discloses the polymerization of styrene in the presence of some coloured anthraquinone and azoderivatives of 1,3,5-triazine, containing a group able to copolymerize.
The Journal of the Chemical Society, 1963, pages 4130-4144, “The Hydrolysis of Some Chloro-1,3,5-Triazines” by S. Horrobin, discloses that dichloro-m-sulphoanilinotriazine is rapidly hydrolysed in acetate (pH 4.7) or phthalate (pH 4.0) buffers.
There are many different types of commercially-available reactive dyes for dyeing cellulosic and polyamide-type substrates. However, a critical problem still facing the textile dye industry today is the significant level of dyestuff material which remains in the effluent waste water after the dyeing process is finished. The industry measure for this problem is known as dye-bath Exhaustion (E). A high Exhaustion value for a particular dye compound means that a low level of spent dye remains in the effluent after the dyeing process is complete, while a low Exhaustion value means that a high level of spent dye remains in the effluent. There is clearly a need therefore for new dye compounds which have higher Exhaustion Values compared with commercially available dye compounds, and which provide benefits in terms of reducing levels of spent dyestuff in effluent water.
As well as having a high Exhaustion Value, it is also important for a dye compound to have a high dye-fibre covalent Fixation Value (F). The Fixation Value (F) of a reactive dye compound is a measure of the extent of covalent bonding with the substrate based on the dye originally absorbed during the dyeing process. Thus 100% Fixation means that 100% of the absorbed dye covalently bonds to the substrate. Thus, there is clearly a need to provide dye compounds having increased Fixation Values. A high Fixation Value can result in a simplification of the post dyeing “soaping off process” traditionally associated with fibre reactive dye compounds. In particular, a high Fixation Value can result in a reduced time spent on the “soaping off process” together with a reduced cost.
It has now been surprisingly found that a new class of fibre reactive dye compounds comprising a nitrogen-containing heterocycle substituted with at least one oxy carbonyl derivative, such as citrate, exhibit significantly increased values of Exhaustion (E) and Fixation (F). These dyes can be used on a wide variety of substrates. They are particularly useful for cellulosic substrates, such as cotton, and materials such as keratin, hair, wool and silk, and show significant improvements in terms of reducing spent dyestuff in effluent, increasing dye affinity to the substrate, increasing the efficiency of the dye-substrate covalent reaction, and simplifying the post dyeing “soaping off process” traditionally associated with reactive dyes. In addition, the compounds of the present invention provide significantly more intense dyeings, and can be used for both high and low temperature dyeing, hence reducing the cost of the dyeing process. Furthermore, the compounds of the present invention can be used together with specific chromophores for cellulose substrate dyeing leading to significantly reduced levels of salt needed for dyeing.
SUMMARY OF THE INVENTION
According to the present invention there is provided a reactive dye compound comprising:
(a) at least one chromophoric moiety;
(b) at least one nitrogen-containing heterocycle;
(c) a linking group to link each chromophoric moiety to each nitrogen-containing heterocycle;
characterised in that at least one nitrogen-containing heterocycle is substituted with at least one oxy- or thio-carbonyl derivative wherein the oxy- or thio-carbonyl derivative is selected from Y wherein Y is —A(CO)R* wherein A is selected from O or S, where R* is an organic residue which contains at least one nucleophilic group, wherein the nucleophilic group is preferably selected from OH, NH
2
, SH, COOH, —N═, NHR
1
and NR
1
R
2
wherein R
1
and R
2
may be the same of different and may be selected from C
1
-C
4
alkyl.
The compounds of the present invention exhibit increased Exhaustion (E) and Fixation (F) values and provide improvements in terms of reducing spent dyestuff in effluent, increasing dye affinity to the substrate, increasing the efficiency of the dye-substrate covalent reaction, ability to carry out the long-liquor dyeing process at room temperature as well as at elevated temperatures, and simplifying the post dyeing “soaping off process” traditionally associated with fibre reactive dyes. In addition, the compounds of the present invention provide significantly more intense dyeings, i.e. greater colour intensity in the dyed substrate, without compromising levelness.
DETAILED DESCRIPTION OF THE INVENTION
As used herein the term “reactive dye” means a dye containing one or more reactive groups, capable of forming covalent bonds with the substrate to be dyed, or a dye which forms such a reactive group in situ.
As used herein the term “Exhaustion” in relation to reactive dyes means the percentage of dye which is transferred from a solution of the dye to the substrate to be treated at the end of the dyeing process, before rinsing and soaping. Thus 100% Exhaustion means that 100% of the dye is transferred from the dye solution to the substrate. Typical Exhaustion Values for the dye compounds herein are >95%.
As used herein the term “Fixation” in relation to reactive dyes means the percentage of dye which covalently bonds with the substrate, based on the dye originally absorbed during the dyeing process. Thus 100% Fixation means that 100% of the dye absorbed is covalently bonded with the substrate. Typical Fixation Values for the dye compounds herein are 95%.
The total efficiency of reactive dyes can be measured by their Efficiency Value (T) which can be calculated from the Exhaustion Value (E) and Fixation Value (F) using the following equation:
%
T
=(
F×E
)/100
The compounds of the present invention comprise a chromophoric moiety and a nitrogen-containing heterocycle linked via a linking group. The nitrogen-containing heterocy
Genain Gilles Yves Marie Fernand
He Wei Dong
Lewis David Malcolm
Yousaf Taher Iqbal
Jenkins & Wilson & Taylor, P.A.
North Carolina State University
Powers Fiona T.
LandOfFree
Reactive dye compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Reactive dye compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reactive dye compounds will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3208005