Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – Bench scale
Reexamination Certificate
1998-08-26
2001-05-29
Tung, T. (Department: 1743)
Chemical apparatus and process disinfecting, deodorizing, preser
Chemical reactor
Bench scale
C422S091000, C422S105000, C422S129000, C422S131000, C422S138000
Reexamination Certificate
active
06238627
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a reaction block and cover to prepare reaction mixtures.
BACKGROUND OF THE INVENTION
In recent years, methods for simultaneously preparing large numbers of chemical compounds have attracted increasing interest. One approach for preparing the compounds is to arrange individual reaction vials within a single reaction unit or block.
A reaction block generally includes a large number of reaction vials, each of which corresponds to a reaction vial for containing a reaction mixture. The reaction block provides a spatially-addressable approach for analyzing the synthesis of a family or library of chemical compounds. Using reaction blocks in this way allows larger number of compounds to be generated and screened more quickly. Thus, reaction blocks are valuable in reducing, for example, the time necessary in bringing new pharmaceutical drugs to market.
Although different reaction blocks are known in which the temperature of the block, and thus the reaction mixture within the vessel, can be controlled, it is difficult to carry out a reflux reaction in a simple, reliable way using known reaction blocks.
SUMMARY OF THE INVENTION
The invention is based on the discovery that a cover assembly that directs a stream of cooling gas (e.g., air) to the middle or upper ends of reaction vials nested in a reaction block is effective to cool the vials sufficiently to carry out a reflux reaction without the need for cooling the ambient air around the reaction block and without the need for a sophisticated and possibly complex cooling system.
In one aspect, the cover assembly includes a cover housing having a gas inlet adapted to receive a cooling gas from an external source and an internal cavity into which the reaction vials extend during operation. The cover assembly also includes an inlet port, positioned between the gas inlet and the internal cavity, through which the cooling gas from the gas inlet flows to cool upper ends of the reaction vials; a movable vane disposed within the internal cavity and configured to be positioned and secured over a portion of the inlet port; and an outlet configured to allow the cooling gas to exit the internal cavity after cooling the upper ends of the reaction vials.
In another aspect, the cover assembly includes a cover housing having a gas inlet adapted to receive a cooling gas from an external source; an internal cavity into which the reaction vials extend; and a plurality of inlet ports, positioned between the gas inlet and the internal cavity and through which the cooling gas from the gas inlet flows to cool upper ends of the reaction vials. The cover assembly also includes an outlet configured to allow the cooling gas to exit the internal cavity after cooling upper ends of the reaction vials.
In still another aspect, the cover assembly includes a gas inlet adapted to receive a cooling gas from an external source; a top wall and a plurality of sidewalls which together define an internal cavity adapted to receive upper ends of each reaction vial during operation; and a plurality of outlet ports formed within at least one of the sidewalls to allow the cooling gas to exit the internal cavity after cooling the upper ends of each reaction vial.
Embodiments of these aspects of the invention may include one or more of the following features.
The cover housing defines a plenum chamber positioned between the gas inlet and the inlet port (or plurality of inlet ports); a plenum member having the inlet port formed therein, an upper surface, and a bottom surface; and a top cover disposed over the plenum member and having a bottom surface which together with the upper surface of the plenum member define the plenum chamber. The gas inlet can be provided within the top cover. The cover assembly can also include a spacer positioned between the plenum member and the reaction block. The spacer has an upper surface which together with the bottom surface of the plenum member defines the internal cavity and the gas outlet.
In other aspects of the invention, a reaction block includes one of the above described cover assemblies and further includes a base including an array of first holes formed therein. Each of the first holes are sized and configured to receive a lower end of a reaction vial. With this arrangement, the array of holes defines a pattern of rows and columns so that the upper ends of the reaction vials themselves form channels to allow the cooling gas to exit the cover through exit openings positioned at an end of the cover assembly and between adjacent rows or columns of the reaction vials.
In embodiments of these reaction blocks, the spacer can include an array of second holes located in a pattern corresponding to the array of first holes. The array of first holes defines a pattern of rows and columns. The base is formed of a first material having a first thermal conductivity characteristic and the spacer is formed of a thermally insulative material having a second thermal conductivity characteristic less than the first thermal conductivity characteristic. In essence, the spacer serves as a thermal isolating barrier between the upper and lower ends of the reaction vials, thereby enhancing reflux condensation. A thermal conductivity characteristic (or coefficient of conductivity) is a measure of the time rate of transfer of heat by conduction through a unit thickness across a unit area for a unit difference of temperature.
In the embodiment in which the cover assembly includes a plurality of gas inlet ports, these ports are formed in the plenum member and are located to direct flow of the cooling gas between adjacent rows of reaction vials.
In embodiments where the outlet ports are formed within one of the sidewalls, the outlet ports are located to direct flow of the cooling gas between adjacent rows of reaction vials.
In another aspect, the invention provides a method of preparing a reaction mixture within a plurality of reaction vials. The method includes positioning the new cover assembly over the reaction vials in a block; providing a cooling gas from an external gas source to the internal cavity via the gas inlet to cool upper ends of the reaction vials; and heating the reaction vials to a predetermined reaction temperature by heating the base of the reaction block.
In certain embodiments, this method further includes positioning each of the plurality of reaction vials within a corresponding one of an array of first holes formed within a base of the reaction block.
A reaction mixture is added to each of the reaction vials prior to positioning the cover assembly over the reaction block.
As used in this method, the base can be formed of a first material having a first thermal conductivity characteristic and a spacer that includes an array of second holes located in a pattern corresponding to the array of first holes can be formed of a second material having a second thermal conductivity characteristic less than the first thermal conductivity characteristic.
In this method, the spacer can be a separate member and can be positioned between the base and cover prior to providing the reaction mixture within each of the reaction receptacles.
The reaction block allows reflux condensation to be performed independently within a large number of individual reaction vials or other receptacles, all of which are supported within the same reaction block. Different reaction mixtures can therefore be dispensed within the individual reaction receptacles and processed simultaneously. Thus, throughput in synthesizing reaction mixtures is increased.
The reaction block also provides a relatively simple, easily manufactured and assembled apparatus for performing reflux condensation reactions. The cover provides a single, open (i.e., no obstructing channel members) internal cavity through which the cooling gas is provided, e.g., through a single inlet.
Although methods and materials of the invention similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and material
Mankarios Erik T.
Manley Edward M.
McGowan David Craig
Werner Christopher C.
ArQule, Inc.
Fish & Richardson P.C.
Handy Dwayne K.
Tung T.
LandOfFree
Reaction block and cover does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Reaction block and cover, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reaction block and cover will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2558486