RAW MATERIAL FOR PRODUCING POWDER OF INDIUM-TIN OXIDE...

Compositions – Electrically conductive or emissive compositions – Metal compound containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S521100, C423S624000, C502S355000

Reexamination Certificate

active

06511614

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a powder of indium-tin oxide aciculae (needle-like crystals) which is most suitable for an electroconductive ink to be used for forming a transparent electroconductive film, a raw material to be used for producing the powder, and electroconductive paste and film which contain the powder of indium-tin oxide aciculae and which are used for forming light-transmitting electrodes such as those in electroluminescence (EL) devices, etc.
BACKGROUND OF THE INVENTION
In a coating method for obtaining a transparent electroconductive film by coating an electroconductive ink on a substrate, used is an oxide filler such as indium-tin oxide (ITO), tin-antimony oxide (ATO), etc., as the electroconductive filler in the ink. Of these, ITO is the best, as having a low resistance value than ATO.
Of electroconductive inks, those having a smaller content of the electroconductive filler therein are more preferred. This is because the light absorption of the filler of an oxide is far larger than that of a transparent resin which is another component in the ink. Therefore, if a film having a low resistance value is obtained, using the least possible amount of the oxide filler relative to the resin, the light transmittance of the film may be improved.
Regarding the electroconductive filler of the kind, acicular (needle-like) or flaky ones are considered preferable. This is because smaller amounts of them may be used for obtaining films having a low resistance value, as compared with using spherical or granular electroconductive fillers, and the films are satisfactory with respect to the cost, the physical strength, the weather resistance, etc.
There are known a method of obtaining flaky oxides by freezing a colloid liquid of an inorganic oxide or hydroxide so as to make fine particles of the oxide or hydroxide precipitated among the solvent molecules of the colloid liquid followed by drying it so as to remove the solvent therefrom and, for the hydroxide, further roasting it to finally obtain flaky oxides (see Japanese Patent Laid-Open No. 62-3003), and a method of obtaining tin oxide aciculae by heating and decomposing tin oxalate aciculae (see Japanese Patent Laid-Open No. 56-120519). However, powder of ITO aciculae having a high aspect ratio has not been obtained.
As conventional electroconductive pastes to be used for forming light-transmitting electrodes such as those in electroluminescence (EL) devices, etc., known are a paste that is obtained by dispersing an electroconductive filler comprising an ultra-fine powder of indium-tin oxide (ITO) in a solvent containing a resin dissolved therein, and a paste that is obtained by dispersing a powder of ITO flakes in a solvent containing a resin dissolved therein.
In organic dispersion-containing EL devices, the substrate has a light-emitting zinc sulfide (ZnS) layer formed thereon by screen-printing or blade-coating and has thereover a light-transmitting electroconductive film formed by coating an electroconductive paste thereon by screen-printing or the like.
In the electroconductive paste containing an ultra-fine powder of ITO as the electroconductive filler, the amount of the electroconductive filler must be much more than that of the resin so as to obtain the intended electroconductivity. It is said that the light-transmitting electroconductive film is desired to be thin, preferably having a thickness of approximately from 2 to 3 &mgr;m, so as to obtain the necessary light transmittance.
The printed surface of the light-emitting zinc sulfide layer is often rough, since the particles of zinc sulfide therein have a size of several ten &mgr;m. Therefore, when an electroconductive paste is coated thereover, the film of the electroconductive paste becomes uneven due to the roughness of the surface of the zinc sulfide layer to partly have a thickness of 1 &mgr;m or less or a thickness of 5 &mgr;m or more, and a uniform electroconductive film having a thickness of from 2 to 3 &mgr;m cannot be formed on the whole surface of the light-emitting layer. The thin parts of the coated electroconductive film were often cracked to unfavorably increase the resistance of the film.
In the electroconductive paste that is prepared by dispersing a powder of ITO flakes in a solvent containing a resin dissolved therein, the content of the electroconductive filler may be smaller than that of the resin in order to obtain the intended electroconductivity. Therefore, even if it is coated at a thickness of 5 &mgr;m or more, the coated film may have sufficient light transmittance. For this reason, the roughness of the surface of the zinc sulfide layer does not cause so much significant problem in this case. However, it is impossible to say that the resistance of the film is sufficient.
Of dispersion-containing EL devices, known are those that are produced by a high-temperature process using an inorganic binder such as glass or the like, at 500 to 600° C. For producing EL devices of this type, for example, a white enamel layer comprising BaTiO
3
, TiO
2
or the like is formed on a low-carbon steel plate by baking it, and a fluorescent layer is formed thereon by baking a mixture comprising a transparent glass having a low melting point and a high dielectric constant and a fluorescent powder. In these devices, a NESA film that is formed by chemical vapor deposition (CVD) of a chloride is used as the light-transmitting electrode.
However, the NESA film has the following drawbacks:
(1) As this is formed by CVD, the electroconductive film is formed on the whole surface and it is difficult to pattern the film.
(2) All the white enamel layer, the fluorescent layer and the transparent protective layer (which is formed on the light-transmitting electroconductive film) are formed by printing, for example, by screen-printing or the like, but only the NESA film is formed by CVD. Therefore, the NESA film is inconvenient for simplifying the production process.
SUMMARY OF THE INVENTION
Given the situations as mentioned above, the present invention is to provide a powder of indium-tin oxide aciculae suitable as an electroconductive filler for an electroconductive ink to be used for forming a transparent electroconductive film, a method for producing a raw material to be used for producing the powder of indium-tin oxide aciculae, which has a major diameter of 5 &mgr;m or more and a ratio of the major diameter to the minor diameter of 5 or more, an electroconductive paste capable of forming a light-transmitting electroconductive film having sufficient electroconductivity and light transmittance by printing, such as screen-printing or the like, followed by high-temperature baking, and a light-transmitting electroconductive film to be formed from the paste.
The gist of the present invention is comprised of the following:
(1) A method for producing a first raw material to be used for producing a powder of indium-tin oxide aciculae, characterized in that an aqueous solution containing indium ions and nitrato ions is heated and concentrated to form a high-viscosity slurry and a powder of aciculae is separated from the slurry.
(2) A method for producing a first raw material to be used for producing a powder of indium-tin oxide aciculae, characterized in that an aqueous solution containing indium ions and nitrato ions and also containing indium hydroxide and/or indium oxide is heated and concentrated to form a high-viscosity slurry and a powder of aciculae is separated from the slurry.
(3) A preferred embodiment of the above-mentioned (1) or (2) for producing a first raw material to be used for producing a powder of indium-tin oxide aciculae, in which the slurry is mixed with a large amount of water or with a large amount of water containing an alkali component and subjected to solid-liquid separation.
(4) A preferred embodiment of the above-mentioned (1) or (2) for producing a first raw material to be used for producing a powder of indium-tin oxide aciculae, in which the slurry is filtered to obtain a filtered cake and the cake is mixed with a large

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

RAW MATERIAL FOR PRODUCING POWDER OF INDIUM-TIN OXIDE... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with RAW MATERIAL FOR PRODUCING POWDER OF INDIUM-TIN OXIDE..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and RAW MATERIAL FOR PRODUCING POWDER OF INDIUM-TIN OXIDE... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3015141

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.