Rate-enhanced gas separation

Gas separation: processes – Solid sorption – Including reduction of pressure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C095S130000, C095S902000, C096S132000, C096S143000

Reexamination Certificate

active

06500234

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to pressure swing adsorption processes and more particularly to PSA processes for the production of high purity oxygen (e.g. oxygen having a purity of 90-95 vol. % O
2
). More particularly, the invention is directed towards increasing the adsorbent productivity while reducing the O
2
product cost.
BACKGROUND OF THE INVENTION
There has been significant development of the various PSA, VSA and VPSA methods for air separation over the past thirty years, with major advances occurring during the last decade. Commercialization of these processes and continued extension of the production range can be attributed primarily to improvements in the adsorbents and process cycles, with advances in adsorber design contributing to a lesser degree. Highly exchanged lithium molecular sieve adsorbents, as illustrated by Chao in U.S. Pat. No. 4,859,217, are representative of advanced adsorbents for oxygen production. Advanced adsorbents of the types mentioned above are the result of improvements in equilibrium properties.
Improving process efficiency and reducing the cost of the light component product can be accomplished by decreasing the amount of adsorbent required and by increasing the product recovery. The former is generally expressed in terms of bed size factor (BSF) in lbs adsorbent/TPDO (ton per day of contained O
2
), while the latter is simply the fraction of light component (i.e. oxygen) in the feed (i.e. air) that is captured as product. Improvement in adsorbents and reduction in cycle time are two primary methods of reducing BSF.
While shorter cycles lead to shorter beds and higher adsorbent utilization, product recovery generally suffers unless adsorption rate is increased. This phenomena can be ideally characterized in terms of the size of the mass transfer zone (MTZ), i.e. the mass transfer zone becomes an increasing fraction of the adsorbent bed as the bed depth decreases. Since the adsorbent utilization with respect to the heavy component (e.g. nitrogen) is much lower in the MTZ than in the equilibrium zone, working capacity declines as this fraction increases.
The effect of particle size upon the size of the MTZ is conceptually straightforward in a single long adsorption step where a contaminant in relatively low concentration is removed from the feed stream on the basis of its higher equilibrium affinity to the adsorbent. When the adsorbate/adsorbent combination is characterized by a favorable isotherm, a steady state transfer zone is envisioned that moves through the adsorber at a constant speed. Distinct equilibrium and mass transfer zones can be identified in the process. Under such conditions, and when the resistance to mass transfer is dominated by intraparticle pore diffusion, it has long been recognized that reducing the adsorbent particle size results in higher adsorption rates and smaller mass transfer zones. Unfortunately, pressure drop across the adsorbent bed increases with decreasing particle size and leads to difficulty in particle retention in the bed and an increased tendency for fluidization.
This ideal concept becomes blurred when the isotherms are unfavorable and/or the mass transfer zone is continuously developing or spreading throughout the adsorption step. Adding the remaining minimum steps of depressurization, desorption and pressurization to create a complete adsorption process cycle further complicates the behavior and character of the mass transfer zone. Nevertheless, the idealized concept of the MTZ has been applied in the prior art as a basis to affect improvements in process performance.
Jain (U.S. Pat. No. 5,232,474) discloses improving adsorbent utilization by decreasing the adsorbent volume and/or increasing the product purity, wherein the removal of H
2
O and CO
2
prior to cryogenic air separation is described using a pressure swing adsorption (PSA) process. The adsorber is configured entirely with alumina or with layers of alumina and 13X molecular sieve adsorbents. Smaller particles (0.4 mm to 1.8 mm) are used to achieve a smaller bed volume.
Umekawa (JP Appl. No. 59004415) shows a lower pressure drop and smaller adsorber for air purification by using a deep layer of large particles (3.2 mm) followed by a shallow layer of small particles (1.6 mm) of the same adsorbent. The bed size and pressure drop of this layered configuration are lower than for beds constructed either of all 3.2 mm or all 1.6 mm particles. The 1.6 mm particles occupy only a small fraction (low concentration part) of the mass transfer zone in the layered configuration.
Miller (U.S. Pat. No. 4,964,888) has suggested using larger particles (>14 mesh or 1.41 mm) in the equilibrium zone and small particles (<14 mesh) in the mass transfer zone. This reduces the size of the MTZ while minimizing the excessive pressure drop increase that would occur if only small particles were used in both zones. Cyclic adsorption process times greater than 30 s are indicated.
Garrett (UK Pat. Appl. GB 2 300 577) discloses an adsorption apparatus containing particles in the size range between 6 mesh (3.36 mm) and 12 mesh (1.68 mm) deployed in either discrete layers or as a gradient of sizes with the largest particles located near the feed inlet and the smallest particles located downstream near the outlet of the adsorber in both configurations.
Very small adsorbent particles (0.1 mm to 0.8 mm) are necessary for the fast cycles and high specific pressure drop that characterize a special class of processes known as rapid pressure swing adsorption (RPSA). Typical RPSA processes have very short feed steps (often less than 1.0 s) operating at high feed velocities, include a flow suspension step following the feed step and generally have total cycle times less than 20 s (often less than 10 s). The behavior of the adsorption step is far removed from the idealized MTZ concept described above. In fact, the working portion of the bed is primarily a mass transfer zone with only a relatively small equilibrium zone (in equilibrium with the feed conditions) in RPSA. A major portion of the adsorber is in equilibrium with the product and provides the function of product storage. The high pressure drop (on the order of 12 psi/ft)/short cycle combination is necessary to establish an optimum permeability and internal purging of the bed which operates continuously to generate product.
RPSA air separation processes using 5A molecular sieve have been described by Jones et al. (U.S. Pat. No. 4,194,892) for single beds and by Earls et al. (U.S. Pat. No. 4,194,891) for multiple beds. Jones has also suggested RPSA for C
2
H
4
/N
2
, H
2
/CH
4
, H
2
/CO and H
2
/CO/CO
2
/CH
4
separations using a variety of adsorbents. The RPSA system is generally simpler mechanically than conventional PSA systems, but conventional PSA processes typically have lower power, better bed utilization and higher product recovery.
In somewhat of a departure from the original RPSA processes, Sircar (U.S. Pat. No. 5,071,449) discloses a process associated with a segmented configuration of adsorbent layers contained in a single cylindrical vessel. One or more pairs of adsorbent layers are arranged such that the product ends of each layer in a given pair face each other. The two separate layers of the pair operate out of phase with each other in the cycle. The intent is for a portion of the product from one layer to purge the opposing layer—the purge fraction controlled by either a physical constriction placed between the layers and/or by the total pressure drop across a layer (ranging from 200 psig to 3 psig). Particles in the size range of 0.2 mm to 1.0 mm, total cycle times of 6 s to 60 s, adsorbent layer depths of 6 inches to 48 inches and feed flow rates of one to 100 lbmoles/hr/ft
2
are broadly specified. An optional bimodal particle size distribution is suggested to reduce interparticle void volume. The process is claimed to be applicable to air separation, drying, and H
2
/CH
4
, H
2
/CO and H
2
/CO/CO
2
/CH
4
separations.
Alpay et al. (Chem. Eng. Sci., 1994) studied the effects of feed p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rate-enhanced gas separation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rate-enhanced gas separation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rate-enhanced gas separation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2955140

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.