Rapid transfer autotransfusion bag and methods related thereto

Surgery – Container for blood or body treating material – or means used...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S408000

Reexamination Certificate

active

06210391

ABSTRACT:

FIELD OF INVENTION
The present invention generally relates to devices for collecting blood and for re-infusing the collected blood back into a patient and more particularly to blood collection bags which can be used to re-infuse the blood by a gravity feed or under pressure.
BACKGROUND OF THE INVENTION
A number of devices or apparatuses have been developed to collect blood from the body cavity of a patient into a remotely located device and then to re-infuse the collected blood back into the patient. This practice has been found to be beneficial and advantageous in a number of respects and circumstances. A number of the remotely located devices may generally be categorized as a collection bag in which the blood is collected and which is then used later as the source of blood for re-infusion. There are, however, a number of shortcomings with such prior art collection bags as will be explained on connection with the following examples.
Three different devices for the collection and reinfusion of blood are described in U.S. Pat. No. 4,573,992 granted to Marx. For one such device (See
FIG. 1 & 1
a
thereof) a flexible collection bag is housed within a rigid receptacle, where blood is collected in the flexible bag by creating suction forces within the flexible bag. U.S. Pat. No. 5,275,585 granted to Olson also discloses another device that employs a flexible container or bag within a rigid outer container. Prior to use, the flexible bag is expanded so it generally conforms to the interior surface of the rigid receptacle. Also, a through aperture is described in the rigid container that communicates with the space between the flexible bag and the rigid container is sealed off or is interconnected to a suction source. In this way, when suction forces are established within the flexible bag, the bag will not collapse. It is further described that following collection of blood, the through aperture can be interconnected to a pressure source so the blood can be re-infused under pressure.
Such devices are cumbersome. Also the container within a container design of these devices makes it difficult to quickly and accurately determine the amount of blood that was collected in the flexible bag and then re-infused back into the patient. Also, proper operation of these devices requires that the interior of the rigid container does not communicate with outside air and/or is interconnected to a suction source. As such, pressure tight conditions must be established for all the penetrations through the housing. This increases the complexity and use of the device. Also, in some cases reduced pressure conditions in the space between the rigid container and outside the flexible bag are established to create the suction forces within the flexible bag.
The other embodiments described in U.S. Pat. No. 4,573,992 (see
FIGS. 2 & 3
thereof) employ a concertina-like container having two ports at opposite ends of the container. In an embodiment shown in
FIG. 2
of this patent, one port is interconnected to a drain line from the patient and the other port is interconnected to a suction source. Also, the concertina-like structure is configured so it does not compress substantially in the radial direction when a reduced pressure condition is established within the container but the container may be compressed in the axial direction. This embodiment further includes a rigid frame structure that is external to the container and extends axially between the two ports, and which cooperates with the configuration of each port to keep the concertina-like container in an extended condition while collecting blood. After the container is filled and after the container has been appropriately reconnected for re-infusion, the rigid structure is removed and the concertina-like container is mechanically or manually compressed axially to force the blood out of the container.
In a further embodiment shown in
FIG. 3
of the Marx patent, the concertina-like structure is configured to have an inherent resiliency so it will automatically expand axially and return to its expanded condition after it has been axially compressed. It is further provided that a spreading spring means, extending between the two ports, can be provided to augment or replace the inherent resiliency of the concertina-like container. In use, the container is compressed axially to its minimum volume by an external force and the suction port of the container is interconnected to a clamped off suction line to the body cavity. The clamp is slowly released and the inherent resiliency of the container and/or the spreading spring means causes the container to extend axially thereby drawing blood therein. After the container is filled with blood, the container is mechanically or manually compressed so as to force the blood out of a separate port in the container to enable the blood to be pressure re-infused into the patient.
The concertina-like container devices disclosed in the Marx patent are cumbersome and not easy to use. Also, these devices are configured to be used in pressurized re-infusion applications and do not lend themselves to gravity feed applications. In order to gravity feed using a concertina-like container, it would be necessary to vent the container while the blood is being removed. As to the second embodiment in the Marx patent and because of the design and intended use of this embodiment, the device is also configured with internal check valves to prevent, for example, the admission of air through one of the ports when drawing blood into the container. Such check valves and other design features of the second embodiment increase the manufacturing complexity of the device. Notwithstanding these check valves, it is still possible for air to be drawn into the container for example, by drawing in both blood and air from the body cavity. Thus, a container may not be filled with blood even though it has been expanded to its maximum extent.
There are other types of collection or blood recovery bags that are configured with a spring type of mechanism to bias the bag open and keep it open when suction conditions are established within the bag. This allows blood to be drawn out of the body cavity and into the collection bag. These internal spring mechanisms act on the interior surfaces of the collection bag to keep the bag open under suction pressure conditions.
For example, one application of an internal spring mechanism consists of a metal spring acting on two opposing plastic members that in turn act on the opposing inside surfaces of the bag. Additionally, the plastic members are usually configured with a latching mechanism to keep the spring compressed so as to minimize the size of the collection bag for shipment and storage. Such types of collection bags are described in U.S. Pat. No. 4,429,693 granted to Blake et al. and U.S. Pat. No. 5,380,314 granted to Herweck et al.
Because internal spring members come into contact with the patient's blood, they must be manufactured of materials that do not pose a health risk or lead to blood contamination. Additionally, these internally located members can cause mechanical trauma to the blood being collected and/or re-infused. Thus, these members must be particularly constructed and configured so as to minimize such mechanical trauma.
When blood is being re-infused, it is desirable to be able to gravity feed the collected blood from the collection bag to a re-infusion device or directly to the patient. Typically blood bags for transfusion or other such fluid filled bags in a hospital or treatment facility are configured so that the fluid can be withdrawn from the bag and infused into the patient by gravity without requiring the bag to be vented. In order to withdraw fluid from a collection bag with an internal spring mechanism, however, the bag must be vented so the collected fluid can be gravity feed to the re-infusion device or patient.
Venting involves configuring the bag with another port that remains sealed while the blood is being collected. This vent is then opened while the blood is drained out

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rapid transfer autotransfusion bag and methods related thereto does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rapid transfer autotransfusion bag and methods related thereto, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rapid transfer autotransfusion bag and methods related thereto will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2527717

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.