Rapid terrain model generation with 3-D object features and...

Computer graphics processing and selective visual display system – Computer graphics processing – Three-dimension

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S427000, C345S426000

Reexamination Certificate

active

06229546

ABSTRACT:

BACKGROUND
1. Field
The invention relates to environmental visualization and modeling simulation systems, and to environmental impact assessment systems, and particularly to a method and system for generating a 3-D world model for simulated real terrain optimized for a personal computer.
2. Description of Related Art
Environmental systems modeling has proven to be an effective method for both teaching about the natural environment and about environmental processes and for estimating potential environmental and socio-economic impacts of environmental changes introduced by human activities. The creation of such an environmental model typically begins with real-world source data that has been derived by environmental survey and monitoring activities, including U.S. Geological Survey information or a data collected by another mapping agency or university. The modeling activity typically involves setting the initial state of various parameters and stepping the model through computations that relate the parameters to process interactions between environmental components, such as setting the parameter for water level of a lake and relating that water level to a precipitation process that interacts between the atmosphere and the lake whereby the lake water level is increased. Three-dimensional transport of energy, momentum, chemical species and other interactions between various environmental or ecological state properties are relevant and useful to these modeling activities. “Running” an environmental model consists of stepping computationally through a series of process instructions, iteratively if required, where the steps correspond to time intervals and the degree of potential environmental change corresponds to the simulated length of time from start of the simulation to its termination. For instance, in a series of computations that takes the computer fifteen seconds to execute an environmental model might simulate the effects of a river eroding its banks over a one-hundred year period—called a hundred year run. Accordingly, there is a need for a technique that not only provides an exact depiction of the environmental input data, but a technique that will also enable the simulation system to be reconfigured to represent environmental alteration and to permit query of altered environmental conditions after a model run. For education and for assessing potential environmental impact it is useful to be able to visualize the original environmental conditions, changes imposed to initial conditions prior to modeling, and the resultant conditions after competing the model run. Such visualization is assisted by allowing a system user to examine and navigate within a 3-D world model of the environmental region under study.
SUMMARY OF THE INVENTION
The present invention provides a system and method optimized for personal computers for terrain model generation where the simulated land surface is colored and textured based on geographic databases, where natural and man-made 3-D object features can populate the surface, and where a user customization interface is provided to rapidly and efficiently query the system and construct the customized model output in a “user-friendly” fashion.
The method includes the steps of acquiring input data from at least one of a plurality of digital data sources, reading the data, translating the data format if necessary, and transforming the input data into one or more intermediate database formats. The intermediate database formats for terrain elevation data may be extracted directly per direction from a user query to create a generated world model file that is of a particular format optimized for a particular image display software means, such as by browsers compliant with the Virtual Reality Modeling Language specification.
One of the advantages of the invention is that an intermediate database format is created through a pre-processing step in the initial data transformation process that is a composite merger of the surface geographic data layers other than terrain elevation. Vegetation data, road data, waterway data and other environmental data layers are combined into a surface-composite intermediate database format which can be subsequently extracted from to be included in the generated world model file.
It is a goal of the invention to maximize the portability and access efficiency of the intermediate database formats. The first transformation process will generate an intermediate database structure and format for each environmental data type that aims to be more compact than the data format originally acquired and to be more efficiently structured to speed secondary access and extraction.
One of the aspects of the invention is the inclusion in the secondary formatting process that creates the generated world model a series of instructions to populate the colored terrain skin, where appropriate, with 3-D objects that simulate natural and man-made object features, such as trees, rocks, bridges, causeways, dams, radio towers, pipelines, and buildings. This 3-D object population step is accomplished by first creating a 3-D object library, whereby the 3-D objects are built in Virtual Reality Modeling Language or other similar graphical software means, where the objects are themselves appropriately colored and textured to simulate real-world appearances, and where the objects can be instanced singly or repetitively. The 3-D objects are then instanced singly and placed by compositing instructions at a specific geographic coordinate in the generated world file or instanced repetitively within a looping program sequence whereby the objects are placed or not based upon compositing rules that may include a random generator as the program marches sequentially along the rows and columns of the terrain skin. It will be appreciated that other geographic data layers could be included in this compositing step for an appropriate application.
The generated 3-D world model is preferably constructed in the Virtual Reality Modeling Language (“VRML”) format, VRML specification 2.0 or higher, with the advantage that this allows numerous combinations of computer platform, operating system, graphical user interface and browser to be employed in using the invention.
Another advantage of the invention is that the terrain elevation and the surface-composite bitmap are maintained as separate blocks of a standard VRML file, VRML specification 2.0 or higher, with the open standard of the VRML viewing technology (such as CosmoPlayer by Silicon Graphics, Liquid Reality by Microsoft, or WorldView by InterVista) creating the merger of the graphical components upon rendering of the scene. This facilitates revision or replacement of the bitmap with a subsequently called bitmap file owing to user activity within the file (i.e., when navigating within the file), where the revised bitmap could be derived from output passed to the intermediate database from an environmental systems model that is coupled by the query processor to the generation of the 3-D world model, or where a revised bitmap might be obtained via the Internet from a remote bitmap or from remote geographic data brought in to revise the bitmap, which Internet acquisition could be triggered by a proximity sensor means that is integral to the VRML 2.0 specification.
Another advantage of the invention derived from generating the 3-D world model in VRML format, VRML specification 2.0 or higher, is that the invention allows the user to take advantage of the built-in hyperlinking and proximity sensor capabilities of the VRML specification. The hyperlinking allows the user to click the mouse while navigating within the 3-D world to bring up multi-media text, or hypertext markup language documents, which documents may be addressed by a universal resource locator (“URL”) with the target document being either local to the computing system or remotely accessible through the Internet or World Wide Web. Similarly, proximity sensors can be set to cause an event to occur within the 3-D model world, which event could include an inclusion o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rapid terrain model generation with 3-D object features and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rapid terrain model generation with 3-D object features and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rapid terrain model generation with 3-D object features and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2481600

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.