Rapid prototyping and tooling system

Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S097000, C700S098000, C700S117000, C700S119000, C700S163000, C345S419000, C345S420000, C264S075000, C264S401000, C264S633000, C264S642000, C264S308000, C427S466000, C427S472000, C427S470000

Reexamination Certificate

active

06405095

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to a computer-controlled object-building system and, in particular, to an improved solid freeform fabrication system for building a three-dimensional object such as a model or a molding tool.
BACKGROUND OF THE INVENTION
Solid freeform fabrication (SFF) or layer manufacturing is a new rapid prototyping and tooling technology. A SFF system builds an object layer by layer or point by point under the control of a computer. The process begins with creating a Computer-Aided Design (CAD) file to represent the desired object. This CAD file is converted to a suitable format, e.g. stereo lithography (.STL) format, and further sliced into a large number of thin layers with the contours of each layer being defined by a plurality of line segments connected to form vectors or polylines. The layer data are converted to tool path data normally in terms of computer numerical control (CNC) codes such as G-codes and M-codes. These codes are then utilized to drive a fabrication tool for building an object layer by layer.
The SFF technology has found a broad range of applications such as verifying CAD database, evaluating design feasibility, testing part functionality, assessing aesthetics, checking ergonomics of design, aiding in tool and fixture design, creating conceptual models and sales/marketing tools, generating patterns for investment casting, reducing or eliminating engineering changes in production, and providing small production runs. Although most of the prior-art SFF techniques are capable of making 3-D form models of relatively weak strength, few are able to directly produce material processing tools (such as molds for injection molding) with adequate accuracy and good speed.
A commercially available system, fused deposition modeling (FDM) from Stratasys, Inc. (Minneapolis, Minn.), operates by employing a heated nozzle to melt and extrude out a nylon wire or wax rod. The nozzle is translated under the control of a computer system in accordance with previously sliced CAD data. The FDM technique was first disclosed in U.S. Pat. No. 5,121,329 (1992), issued to Crump. This process requires preparation of a raw material into a flexible filament or a rigid rod form and, in real practice, has met with difficulty in extruding high temperature metal or ceramic materials. A more recent patent (U.S. Pat. No. 5,738,817, April 1998, to Danforth, et al.) reveals a FDM process for forming 3-D objects from a mixture of a particulate composition dispersed in a binder. The binder is later burned off with the remaining particulate composition densified by either metal impregnation or high-temperature sintering. Other melt extrusion-type processes include those disclosed in Valavaara (U.S. Pat. No. 4,749,347, June 1988), Masters (U.S. Pat. No. 5,134,569, July 1992), and Batchelder, et al. (U.S. Pat. No. 5,402,351, 1995 and U.S. Pat. No. 5,303,141, 1994). These melt extrusion based deposition systems are known to provide a relatively poor part accuracy. For instance, a typical FDM system provides an extruded strand of 250 to 500 &mgr;m, although a layer accuracy as low as 125 &mgr;m is achievable. The accuracy of a melt extrusion rapid prototyping system is limited by the orifice size of the extrusion nozzle, which cannot be smaller than approximately 125 &mgr;m in real practice. Otherwise, there would be excessively high flow resistance in an ultra-fine capillary channel.
In U.S. Pat. No. 4,665,492, issued May 12, 1987, Masters teaches part fabrication by spraying liquid resin droplets, a process commonly referred to as Ballistic Particle Modeling (BPM). The BPM process includes heating a supply of thermoplastic resin to above its melting point and pumping the liquid resin to a nozzle, which ejects small liquid droplets from different directions to deposit on a substrate. Patents related to the BPM technology can also be found in U.S. Pat. No. 5,216,616 (June 1993 to Masters), U.S. Pat. No. 5,555,176 (September 1996, Menhennett, et al.), and U.S. Pat. No. 5,257,657 (November 1993 to Gore). Sanders Prototype, Inc. (Merrimack, N.H.) provides inkjet print-head technology for making plastic or wax models. Multiple-inkjet based rapid prototyping systems for making wax or plastic models are available from 3D Systems, Inc. (Valencia, Calif.). Model making from curable resins using an inkjet print-head is disclosed by Yamane, et al. (U.S. Pat. No. 5,059,266, October 1991 and U.S. Pat. No. 5,140937, August 1992) and by Helinski (U.S. Pat. No. 5,136,515, August 1992). Inkjet printing involves ejecting fine polymer or wax droplets from a print-head nozzle that is either thermally activated or piezo-electrically activated. The droplet size typically lies between 30 and 50 &mgr;m, but could go down to 13 &mgr;m. This implies that inkjet printing offers a high part accuracy. However, building an object point-by-point with “points” or droplets as small as 13 &mgr;m could mean a slow build rate.
In a series of U.S. Pat. (No. 5,204,055, April 1993, U.S. Pat. No. 5,340,656, August 1994, U.S. Pat. No. 5,387,380, February 1995, and U.S. Pat. No. 5,490,882, February
1996),
Sachs, et al. disclose a 3-D printing technique that involves using an ink jet to spray a computer-defined pattern of liquid binder onto a layer of uniform-composition powder. The binder serves to bond together those powder particles on those areas defined by this pattern. Those powder particles in the “negative” regions (without binder) remain loose or separated from one another and are removed at the end of the build process. Another layer of powder is spread over the preceding one, and the process is repeated. The “green” part made up of those bonded powder particles is separated from the loose powder when the process is completed. This procedure is followed by binder removal and metal melt impregnation or sintering. Again, ejection of fine liquid droplets to bond a large area of powder particles could mean a long layer-building time. Additionally, it is difficult to entirely remove the polymer binder material from the finished 3-D object. The presence of binder residue could reduce the strength and other desired properties of the object. The metal melt impregnation process results in a honey-comb type structure of less than desirable properties and subjects this structure to creeping or warping during sintering of the original host material. The selected laser sintering or SLS technique (e.g., U.S. Pat. No. 4,863,538) involves spreading a full-layer of powder particles and uses a computer-controlled, high-power laser to partially melt these particles at desired spots. Commonly used powders include thermoplastic particles or thermoplastic-coated metal and ceramic particles. The procedures are repeated for subsequent layers, one layer at a time, according to the CAD data of the sliced-part geometry. The loose powder particles in each layer are allowed to stay as part of a support structure. The sintering process does not always fully melt the powder, but allows molten material to bridge between particles. Commercially available systems based on SLS are known to have several drawbacks. One problem is that long times are required to heat up and cool down the material chamber after building. In addition, the resulting part has a porous structure and subsequent sintering or infiltration operations are needed to fully consolidate the part.
In U.S. Pat. No. 5,555,481 (September 1996) Rock and Gilman disclose a freeform powder molding (FPM) method. A first class material and a second class material are deposited on a surface wherein the first class material forms a 3-D shape defined by the interface between the first class material and the second class material. The first class material is unified by subsequent processing such as sintering or fusion-and-solidification, which is followed by removing the second class material from the 3-D part made up of first class material. The second class material plays the basic role of serving as a support structure. Upon completion of the deposition procedure for

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rapid prototyping and tooling system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rapid prototyping and tooling system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rapid prototyping and tooling system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2976491

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.