Food or edible material: processes – compositions – and products – Fermentation processes – Of milk or milk product
Reexamination Certificate
1999-07-30
2001-06-05
Wong, Leslie (Department: 1761)
Food or edible material: processes, compositions, and products
Fermentation processes
Of milk or milk product
C426S034000, C426S035000, C426S038000, C426S040000, C426S582000
Reexamination Certificate
active
06242016
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is directed to a rapid method for the manufacture of grated hard cheese. More particularly, the method of the present invention provides grated hard cheese, especially grated Parmesan cheese, by a rapid and efficient method.
FIELD OF THE INVENTION
Parmesan cheese is the name in common use for a group of very hard cheeses which are customarily used in a grated form. Included in the group are Parmigiano, Reggiano, Lodigiano, Lombardi, Emiliano, Veneto, and Baggozo. They differ in size, shape, and fat content. Also, there are some differences in methods of manufacture. Fully cured Parmesan cheese is very hard and keeps almost indefinitely. It can be grated easily and is commonly used as grated cheese on salads, soups, and pasta. In the United States, Parmesan cheese is usually cured for ten months. Normally, the moisture level of the cured cheese is between 30 and 32 percent and the fat level is between 22 and 32 percent.
It is known to produce a grated Parmesan cheese which is sold in containers for direct use on salads, soups, pasta, and the like. The grated Parmesan cheese usually available in the marketplace is dried, after curing, to a moisture level of from about 12 and 18 percent. At this moisture level, there is little problem of clumping or agglomeration of the grated cheese product. U.S. Pat. No. 4,960,605 to Trecker et al. describes a method for making a grated Parmesan cheese which has a higher moisture level (i.e., about 19 to about 24 percent). In accordance with this patent, disodium phosphate is added to grated Parmesan cheese particles having a moisture content when packaged of about 19 to about 24 percent. In the method of Trecker et al., conventional fill moisture Parmesan cheese (i.e., aged for at least 10 months and having a moisture content of about 30 to 32 percent) is first shredded. The Parmesan shreds are transported with the aid of a conveyor to a surge bin and are discharged from the surge bin through an auger conveyor which transports the cheese to a hammer-mill disintegrator to provide a grated cheese. The grated Parmesan cheese is fed directly from the hammer-mill disintegrator to a fluid bed drier. The finished grated Parmesan is discharged from the drier at about 22 percent moisture.
The manufacture of cheeses or cheese base materials from milk through preparation of a retentate by removal of salts, lactose, and water has been taught in various patents and literature references. For example, Coulter et al., U.S. Pat. No. 3,988,481, teaches the preparation of cheese from milk which has been de-lactosed and de-watered by a process involving molecular sieving a standardized milk to substantially separate and remove lactose and water-soluble minerals from the milk to render the milk substantially sugar-free, and adding a curd-forming agent to produce curd. The resulting curd is subjected to conventional handling without substantial syneresis to produce a cheese, and molded to a desired form.
Stenne, U.S. Pat. No. 3,899,596, discloses a process for the production of cheese which comprises treating milk by ultrafiltration to obtain a product having at least some of the protein constituents of the milk, renneting the liquid product after inoculation with suitable ferments, and introducing a batch of the renneted liquid into a vertical chamber in which it is left to coagulate. The coagulum is cut into slabs which provide the end product cheese.
Maubois et al., U.S. Pat. No. 3,914,435, teaches a manufacturing process whereby cheese is prepared from heat-treated milk without a conventional drainage step. This process involves ultrafiltering of the milk to produce a concentrate having essentially the composition of cheese produced by conventional whey draining processes. The process allows the milk, after ultrafiltration, to be heat-treated without making the milk more difficult to coagulate with rennet, which difficulty normally occurs when milk is heated to high temperatures.
Wargel et al., U.S. Pat. No. 4,244,971, teaches the manufacture of cheeses and process cheese from ultrafiltered milk. Rubin et al., U.S. Pat. No. 4,401,679, discloses a process for preparing cheese base by concentrating milk through ultrafiltration, combined with diafiltration and evaporation, wherein the retentate from the ultrafiltration is inoculated with a lactic acid culture before evaporation. After evaporation, acidification proceeds to completion during and after packaging.
Further, cheese base material has been taught by evaporating moisture from retentate under turbulent conditions to provide a lower moisture condition. Such a process is described in an article by Ernstrom et al., entitled “Cheese Base for Processing: A High-yield Product from Whole Milk by Ultrafiltration,”
Journal of Dairy Science,
Volume 63, pp. 228-234 (1980). The article teaches a process wherein whole milk of normal pH, or acidified to a pH of 5.7, is concentrated by ultrafiltration to about 40 percent of the original milk weight and diafiltered at constant volume until a desired ratio of lactose to buffer capacity is established. The retentate is further concentrated by ultrafiltration to 20 percent of the original milk weight. The retentate is then inoculated with cheese starter and incubated to completely ferment the residual lactose. The pH is controlled by adjusting the level of lactose from the diafiltration step of the process. The product is further concentrated in a swept-surface vacuum-pan evaporator or a Luwa evaporator. It is pointed out that the use of a batch evaporator is necessitated when the retentate, upon fermentation, curdles or coagulates, since such a product cannot be readily processed in any continuous-flow evaporator.
It is also known to add salt during fermentation to prevent coagulation. See, e.g.,
LeLait,
November-December, 539-540 (1974). Further, it has been disclosed that salt in the retentate may facilitate evaporation. PCT WO82/01806 (Jun. 10, 1982).
However, the prior art teaches that addition of rennet or other coagulating enzymes to high-solids milk systems causes rapid coagulation, a condition to be avoided during evaporation, as indicated above, since the evaporation is highly inefficient after coagulation occurs. On the other hand, the presence of coagulating enzymes may be desired, particularly in higher-solids cheese, to provide the conventional presence of para kappa casein. The kinetics of enzymatic coagulation of milk is disclosed by Alfred Carlson, in a thesis published in 1982, at the University of Wisconsin, entitled “The Kinetics of Enzymatic Coagulation of Milk”.
In the conventional cheese-making with rennet, the macro peptides formed by rennet action are lost in the whey with consequently reduction in yield and loss of nutritious milk protein material. Accordingly, it would be desirable to enjoy the benefit of rennet action while avoiding whey removal with consequent loss of macro peptides.
Further, prior art methods for making cheese base materials at higher-solids with evaporation, in which evaporation is effected with high turbulence or the cheese base material is recovered with substantial working after evaporation, has resulted in destabilization of the higher-solids cheese base material, thereby providing body and texture unlike various cheeses. This destabilization is particularly noticeable at total solids in excess of about 60 to 62 percent (e.g., a cheese such as cheddar cheese) but is also present at solids as low as 55 percent. Accordingly, cheese base materials heretofore produced by evaporating retentates to a total solids in excess of 60 percent have not provided the typical body and texture characteristics of high-solids cheeses.
In addition, the use of high turbulence throughout evaporation or working after evaporation does not provide a curd-like product. Prior art methods for making cheese from retentates with evaporation techniques do not disclose a method for making a curd-like product.
The prior art teaches many different steps in respect to the manufacture of cheeses and chee
Mehnert David Webb
Moran James William
Trecker Gary W.
Fitch Even Tabin & Flannery
Kraft Foods Inc.
Wong Leslie
LandOfFree
Rapid method for manufacture of grated parmesan cheese does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Rapid method for manufacture of grated parmesan cheese, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rapid method for manufacture of grated parmesan cheese will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2444528