Rapid identification of bacteria from positive blood cultures

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S091200, C700S104000

Reexamination Certificate

active

10897592

ABSTRACT:
Disclosed is a method of detecting bacteria in a biological sample, especially a blood sample, without the need for extensive sub-culturing of the sample. Nucleic acid present within the sample is isolated and bacterial DNA specifically amplified using primers that uniquely prime the amplification of 16s rRNA-encoding nucleic acid. The amplicons are then digested with an endonuclease to yield a restriction fragment length profile for the biological sample. The restriction fragment length profile for the biological sample is then compare to a database of profiles made using cultures of known bacterial species. A match between the sample profile and the database identifies the bacteria present in the sample.

REFERENCES:
patent: 6177266 (2001-01-01), Krishnamurthy et al.
patent: 6613520 (2003-09-01), Ashby
patent: WO 9513396 (1995-05-01), None
Turenne et al. (Rapid Identification of Bacteria from Positive Blood Cultures by Fluorescence-Based PCR-Single-Strand Conformation Polymorphism Analysis of the 16S rRNA Gene Journal of Clinical Microbiology. Feb. 2000. vol. 38, No. 2: pp. 513-520).
Nowak et al. “Differentiation of seventeen genospecies of Acinetobacter by multiplex polymerase chain reaction and restriction fragment length polymorphism analysis” Molecular and Cellular Probes. 1996. No. 10: pp. 405-411).
Marsh et al. “Terminal Restriction Fragment Length Polymorphism Analysis Program, A Web-Based Research Tool for Microbial Community Analysis” Applied and Environmental Microbiology. Aug. 2000. vol. 36, No. 8: pp. 3616-3620).
Liu et al. (Characterization of Microbial Diversity by Determining Terminal Resriction Fragment Length Polymorphisms of Genes Encoding 16S rRNA Applied and Environmental Microbiology. Aug. 1997. vol. 63, No. 11: pp. 4516-4522).
Liu et al. (“Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA” Appl Environ Microbiol. Nov. 1997;63(11):4516-22).
Bernhard et al. (“Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes” Appl Environ Microbiol. Apr. 2000;66(4):1587-94).
Marsh et al. “Terminal Restriction Fragment Length Polymorphism Analysis Program, A Web-Based Research Tool for Microbial Community Analysis” Applied and Environmental Microbiology. Aug. 2000. vol. 36, No. 8: pp. 3616-3620).
Turenne et al. (Rapid Identification of Bacteria from Positive Blood Cultures by Fluorescence-Based PCR-Single-Strand Conformation Polymorphism Analysis of the 16S rRNA Gene Journal of Clinical Microbiology. Feb. 2000. vol. 38, No. 2: pp. 513-520).
Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbio. Rev. 59:143-169.
Avaniss-Aghajani, E., K. Jones, A. Holtzman, T. Aronson, N. Glover, M. Boian, S. Froman, C. F. Brunk. 1996. Molecular technique for rapid identification of Mycobacteria. J. Clin. Microbiol. 34:98-102.
Brakstad, O. G., K. Aasbakk, and J. A. Maeland. 1992. Detection ofStaphylococcus aureusby polymerase chain reaction amplification of thenucgene. J. Clin. Microbiol. 30:1654-1660.
Browne, K., J. Miegel, and K. D. Stottmeier. 1984. Detection of pneumococci in blood cultures by latex agglutination. J. Clin. Microbiol. 19:649-650.
Brunk, C. F., E. Avaniss-Aghajani, and C. A. Brunk. 1996. A computer analysis of primer and probe hybridization potential with bacterial small-subunit rRNA sequences. Appl. Environ. Microbiol. 62:872-879.
Chen, K., H. Neimark, P. Rumore, and C. R. Steinman. 1989. Broad range DNA probes for detecting and amplifying eubacterial nucleic acids. FEMS Microbiol. Lett. 48:19-24.
Chen, Y. C., J. D. Eisner, M. M. Kattar, S. L. Rassoulian-Barrett, K. Lafe, U. Bui, A. P. Limaye, and B. T. Cookson. 2001. Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J. Clin. Microbiol. 39:4042-4051.
Denis, F., J. Fleurette, G. Laurans, A. Moulin, M. Mounier, J. Orfila, and M. E. Reverdy. 1984. A latex agglutination technique for rapid, direct identification of pneumococci in blood cultures. Eur. J. Clin. Microbiol. 3:321-322.
Doern, G. V., R. Vautour, M. Gaudet, and B. Levy, 1994. Clinical impact of rapid in vitro susceptibility testing and bacterial identification. J. Clin. Microbiol. 32:1757-1762.
Fredricks, D. N., and D. A. Relman, 1998. Improved amplification of microbial DNA from blood cultures by removal of the PCR inhibitor sodium polyanetholesulfonate, J. Clin. Microbiol., 36:2810-2816.
Fredricks, D. N. and D. A. Relman. 1999. Application of polymerase chain reaction to the diagnosis of infectious diseases. Clin. Infect. Dis. 29:475-486.
Gordon, L. P., M. A. Damm, and J. D. Anderson. 1987. Rapid presumptive identification of streptococci directly from blood cultures by serologic tests and the L-pyrrolidonyl-beta-naphthylamide reaction. J. Clin. Microbiol. 25:238-241.
Grisold, A. J., E. Leitner, G. Muhlbauer, E. Marth, and H. H. Kessler. 2002. Detection of methicillin-resistantStaphylococcus aureusand simultaneous confirmation by automated nucleic acid extraction and real-time PCR. J. Clin. Microbiol. 40:2392-2397.
Jarvis, W. R. 1996. Selected aspects of the socioeconomic impact of nosocomial infections: morbidity, mortality, cost, and prevention. Infect. Control Hosp. Epidemiol. 17:552-557.
Kitts, C. L. 2001. Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr. Issues Intest. Microbiol. 2:17-25.
Lem, P., J. Spiegelman, B. Toye, and K. Ramotar. 2001. Direct detection ofmecA,nuc and 16S rRNA genes in BacT/Alert blood culture bottles. Diagn. Microbiol. Infect. Dis. 41:165-168.
Louie, L., J. Goodfellow, P. Mathieu, A. Glatt, M. Louie, and A. E. Simor. 2002. Rapid detection of methicillin-resistant staphylococci from blood culture bottles by using a multiplex PCR assay. J. Clin. Microbiol. 40:2786-2790.
Maes, N., J. Magdalena, S. Rottiers, Y. De Gheldre, and M. J. Struelens. 2002. Evaluation of a triplex PCR assay to discriminateStaphylococcus aureusfrom coagulase-negative Staphylococci and determine methicillin resistance from blood cultures. J. Clin. Microbiol. 40:1514-1517.
Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr., P. R. Saxman, R. J. Farris, G. M. Garrity, G. J. Olsen, T. M. Schmidt and J. M. Tiedje. 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids Research. 29:173-174.
Maquelin, K., C. Kirschner, L. P. Choo-Smith, N. A. Ngo-Thi, T. van Vreeswiijk, M. Stammler, H. P. Endtz, H. A. Bruining, D. Naumann, and G. J. Puppels. 2003. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J. Clin. Microbiol. 41:324-329.
Marsh, T. L. 1999. Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2:323-327.
Marsh, T. L., P. Saxman, J. Cole, and J. Tiedje. 2000. Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl. Environ. Microbiol. 66:3616-3620.
Murakami, K., W. Minamide, K. Wada, E. Nakamura, H. Teraoka, and S. Watanabe. 1991. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J. Clin. Microbiol. 29:2240-2244.
Oliveira, K., S. M. Brecher, A. Durbin, D. S. Shapiro, D. R. Schwartz, P. C. De Girolami, J. Dakos, G. W. Procop, D. Wilson, C. S. Hanna, G. Haase, H. Peltroche-Llacsahuanga, K. C. Chapin, M. C. Musgnug, M. H. Levi, C. Shoemaker, and H. Stender. 2003. Direct identification ofStaphylococcus aureusfrom positive blood culture bottles. J. Clin. Microbiol. 41:889-891.
Qian, Q., Y. W. Tang, C. P. Kolbert, C. A. Torgerson, J. G. Hughes, E. A. Vetter, W. S. Harmsen, S. O. Montgomery, F. R. Cockerill, 3rd, and D. H. Persing.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rapid identification of bacteria from positive blood cultures does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rapid identification of bacteria from positive blood cultures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rapid identification of bacteria from positive blood cultures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3776971

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.