Chemistry: molecular biology and microbiology – Apparatus – Including measuring or testing
Reexamination Certificate
2001-12-13
2004-07-20
Gitomer, Ralph (Department: 1651)
Chemistry: molecular biology and microbiology
Apparatus
Including measuring or testing
C435S019000, C435S305300
Reexamination Certificate
active
06764849
ABSTRACT:
BACKGROUND OF THE INVENTION
I. Field of the Invention
This invention is a rapid and simple method for the differential diagnosis of allergies, sinusitis and upper respiratory tract infections. The method involves the use of either commercially available or novel, specifically adapted, indicator or reagent test strips which are contacted with nasal secretions. Based on the differential read-out from the indicator strip, and a measure of eosinophil infiltration or other substance in the nasal secretion, a user of the strip is able to determine, with the assistance of a scoring method disclosed herein, whether an allergic condition, a viral infection or bacterial sinusitis is the cause of the respiratory discomfort. In particular, this invention provides an improved device for providing differential diagnosis whereby a patient may easily deposit nasal secretions on the indicator elements by blowing their nose into a container, such as a bag, in which the indicator device may be inserted, or in which the indicator element forms an integral part.
II. Background
It is common for patients afflicted with respiratory discomfort to seek the advice of a clinician in an effort to minimize or overcome their discomfort. Such discomfort generally is attributable to one of the following etiologies: allergic reactions, viral upper respiratory tract infections (URIs), or bacterial infections which can produce sinusitis. However, the clinician presented with such a patient typically has the daunting task of determining which of these three principal etiologies is responsible for the discomfort experienced by a particular patient. The danger inherent in a mis-diagnosis can be quite severe. For example, should the clinician incorrectly diagnose an allergy as sinusitis, a course of antibiotics would typically be prescribed. Naturally, such treatment would do little to alleviate the allergic discomfort being experienced by the patient while at the same time, the patient is exposed to an antibiotic to which there is a possibility of raising a resistant bacterial infection. Should this occur, a problem much more severe than the original allergic condition will have been unwittingly engendered. The prevalence of antibiotic-resistant strains on a global scale due to the over-prescribing of antibiotics has become an increasingly recognized problem (Service, R. F., 1995).
In the foregoing example, the availability of a rapid and simple differential diagnostic method would, instead of resulting in a compounded problem, result in the simple recommendation by the clinician that the patient adhere to a course of antihistamine treatment, allergen avoidance, and/or a regimen of toleragenic desensitization. Unfortunately, however, to date, there is no such simple procedure which will provide the clinician with the necessary differential diagnosis. An accepted method of diagnosis for bacterial sinusitis is expensive radiologic imaging (typically X-ray or CT-scan) of the patients' sinuses (see Katz et al., 1995).
Many scientific articles have appeared addressing one or another of the various etiologies of respiratory discomfort. However, no rapid, inexpensive differential diagnostic method has been found. Thus, for example, Wang et al.,
Correlations between Complaints, Inflammatory Cells and Mediator Concentrations in Nasal Secretions after Nasal Allergen Challenge and during Natural Allergen Exposure
, Int. Arch. Allergy Immunology 1995; 106:278-285, disclosed a method of using a nasal microsuction technique. They showed that nasal allergen challenge (NAC) of asymptomatic (out of season) seasonal allergic rhinitis patients results in immediate (5 minutes) increases in histamine, leukotriene C4 (LTC4), and tryptase, with a more gradual (one hour post NAC) and prolonged increase in eosinophil and eosinophil cationic protein (ECP) concentration in nasal secretions. By contrast, in symptomatic (in season allergic rhinitis) patients, high concentrations of eosinophils, ECP, LTC4 and histamine, but not tryptase, were observed. It was concluded that allergic rhinitis is a chronic inflammation of the nasal mucosa, and that infiltration of eosinophils and release of late-phase inflammatory mediators are the predominant pathophysiologic markers. However, this publication neither teaches nor suggests that these observations can be applied to distinguish patients suffering from an allergic condition as opposed to an infection. In addition, the methods used by these authors are laborious and time-consuming and do not involve the use of reagent test strips. Sigurs et al.,
Eosinophil cationic protein in nasal secretion and in serum and myeloperoxidase in serum in respiratory syncytial virus bronchiolitis: relation to asthma and atopy
, Acta Paediatr 1994; 83:1151-5, concluded that it is not possible to predict, from eosinophil cationic protein/albumin ratios in nasal secretions or from ECP and myeloperoxidase concentrations in serum, whether children with respiratory syncytial virus (RSV) bronchiolitis would develop asthma. The publication provides no teaching or suggestion of a method which can easily distinguish patients suffering from an allergic condition as opposed to an infection. The methods used by these authors are laborious and time-consuming and do not involve the use of reagent test strips. Okuda et al.,
A Novel Method of Counting Eosinophils in Nasal Secretion of Allergic Rhinitis by Hemocytometric Method
, Int. Arch. Allergy Immunol. 1994; 104 (suppl. 1):6, disclosed a rapid method for quantifying the number of eosinophils in nasal secretions as a method for diagnosis of allergic rhinitis. The method involves preparation of a solubilized sample of nasal secretion and counting of whole eosinophils. There is no mention of reagent test strips and there is no mention of a method for distinguishing patients suffering from an allergic condition as opposed to an infection.
Kowalski et al.,
Neutrophil chemotactic activity
(
NCA
)
in nasal secretions from atopic and non
-
atopic subjects
, Allergy 1993; 48:409-414, reported that basal nasal secretions of both healthy persons and patients with chronic rhinitis contain significant chemotactic activity to neutrophils. The study also reports that there is an increase in protein content of nasal secretions in patients with perennial allergic rhinitis (AR) following challenge with an antigen. There is no mention of reagent test strips and there is no mention of a method for distinguishing patients suffering from an allergic condition as opposed to an infection.
Igarashi et al.,
Analysis of nasal secretions during experimental rhinovirus upper respiratory infections
, J. Allergy Clin. Immunol. 1993; 92:722-731, studied patients with allergic rhinitis or control subjects inoculated with rhinovirus. Nasal lavage samples pre- and post-infection were analyzed for protein and mast cell mediators. It was found that total protein (including the plasma proteins albumin and IgG and the glandular proteins lactoferrin, lysozyme and secretory IgA) increased post-infection, predominantly due to increased vascular permeability. It was also found that the allergic subjects had fewer symptoms, but greater vascular permeability and greater histamine secretion than control subjects post-rhinovirus infection. Protein was determined by the bicinchoninic acid protein assay (Pierce Chemical Co.) on aliquots of nasal lavage. It is noted at several points in the publication that the symptoms of rhinovirus infected patients and patients with nasal allergic reactions are similar, thus teaching away from the possibility that a simple nasal secretion assay method could be used to distinguish these conditions. Inasmuch as this study is directed at determining the differences in nasal secretions between rhinovirus infected normal or allergic individuals, the study addresses a different problem than that addressed by the instant invention, which is a method for measuring the differences in nasal secretions of patients infected with a rhinovirus, for example, and a patient not infected with a rhino
Huang Shih-Wen
Kudla Ronald
Small Parker
Beusse Brownlee Wolter Mora & Maire
Gitomer Ralph
Univeristy of Florida
Van Dyke Timothy H.
LandOfFree
Rapid diagnostic method for distinguishing allergies and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Rapid diagnostic method for distinguishing allergies and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rapid diagnostic method for distinguishing allergies and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3221004