Rapid-action coupling for hoses or rigid lines in motor...

Pipe joints or couplings – Essential catch

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C285S308000

Reexamination Certificate

active

06540263

ABSTRACT:

BACKGROUND
The invention is based on a rapid-action coupling for hoses or rigid lines with a coupling box, a plug-in nipple and a locking element, where the coupling box has a recess and an opening that extends essentially vertically with respect to the longitudinal axis of the recess with a first end and a second end, where the plug-in nipple and the coupling box can be connected by -introducing the plug-in nipple into the recess of the coupling box and this connection can be locked by introducing the locking element into the first end of the opening and by engaging it in the axial direction and where the locking element has a means for releasing the engagement.
According to the state of the art, it is disadvantageous in the case of rapid-action couplings that in order to lock the rapid-action coupling and to release it, access to the rapid-action coupling from both sides of the opening must be ensured. This is due to the fact that the locking element is introduced into the opening from a first end of the opening up to the point where the locking element engages with the coupling box and the locking element is released from the second end of the opening.
Thus, it is the task of the invention to provide a rapid-action coupling for hoses or rigid lines where the demand for accessibility during the locking of the rapid-action coupling and during the separation of the rapid-action coupling is minimal and, furthermore, the danger of an unintended release of the rapid-action coupling is reduced.
SUMMARY
In accordance with the invention, this task is solved by a rapid-action coupling for hoses or rigid lines with a coupling box, a plug-in nipple and a locking element, wherein the coupling housing has a recess and an opening that extends essentially vertically with respect to the longitudinal axis of the recess with a first end and a second end, wherein the plug-in nipple and the coupling housing can be connected by introducing the plug-in nipple into the recess and this connection can be locked by introducing the locking element into the first end of the opening and by engaging it there, where the locking element has a means for releasing the engagement and where the means for releasing the engagement in the engaged state of the locking element are arranged in the area of the first end of the opening.
In accordance with the invention, due to the arrangement of the means for releasing the engagement, accessibility of the rapid-action coupling in the area of the second end of the opening is not necessary. For this reason, the rapid-action coupling of the invention can be installed in spatially restricted areas. Furthermore, it is easier to lock and separate since both processes are carried out from the same side. Finally, an unintended separation of the rapid-action coupling of the invention is, for the most part, impossible since the coupling housing of the rapid-action coupling of the invention affords fewer opportunities for an unintentional external influence on the locking element.
In a variant of the invention, the opening is provided that with at least one recess and the respective recesses can be engaged by a projection of the locking element. As an alternative, the locking element is also provided with at least one recess and the respective recesses that can engage with one projection of the opening. Common to both embodiments is the fact that the engagement by means of a projection and a corresponding recess is extremely reliable and, nevertheless, simple to manufacture.
In one embodiment of the invention, the projections of the locking element are in functional connection with the means for releasing the engagement by means of a one-armed lever and the projections of the locking element are arranged between the fulcrum of the one-armed lever and the means for releasing the engagement.
In another embodiment of the invention, the recesses of the locking element are in functional connection with the means for releasing the engagement by means of a one-armed lever and the recesses of the locking element are arranged between the fulcrum of the one-armed lever and the means for releasing the engagement.
Common to both embodiments is the fact that, due to the use of a one-armed lever, a simple and reliable release of the engagement is possible. Furthermore, this embodiment is particularly advantageous from the point of view of production technology since the required injection-molding die can be in a simple form. As a supplement to the invention, it is provided that the projections of the locking element are in functional connection with the means for releasing the engagement via a two-armed lever and that the fulcrum of the two-armed lever is arranged between the projections of the locking element and the means for releasing the engagement. In another embodiment of the invention, the recesses of the locking element are in functional connection with the means for releasing the engagement via a two-armed lever and the fulcrum of the two-armed lever is arranged between the recesses of the locking element and the means for releasing the engagement. Common to these embodiments is the fact that the selection of the transmission ratios between the movement of the projections or of the recess(es) of the locking element and the movement of the means for releasing the engagement can be made freely with broad parameters and, moreover, the direction of movement is reversed. By reversing the direction of movement, it can be achieved that an external force acting on the means for releasing the engagement cannot release this engagement but further secures it. Thereby, the danger of an unintentional separation of the rapid-action coupling is further reduced.
In a variant of the invention, the lever(s) are spring-loaded so that the locking element automatically engages when it is introduced into the opening and an unintentional release of the engagement is prevented.
As a supplement to the invention, the plug-in nipple has a flange and the locking element has at least one recess, which, in the engaged state of the locking element, partially grips around the plug-in nipple in the area between the flange and the end of the recess that opposite the base of the recess and whose width, at least in part, is smaller than the diameter of the flange, so that the separation of the coupling housing and the plug-in nipple, while the locking element is engaged, is prevented simply and effectively.
In another embodiment of the invention, the second end of the opening is closed so that the coupling housings have an outer contour with a smooth surface and the penetration of dirt into the interior of the coupling housing is reduced.
In another embodiment of the invention, the coupling housings and the plug-in nipple can be connected to each other in a torsion-resistant manner, so that the hoses or rigid lines connected to the rapid-action coupling cannot be turned against each other.
In another supplement to the invention, sealing elements, particularly O-rings, are present in the recess which seal off a through-hole of the coupling housings and a through-hole of the plug-in nipple with respect to the outside, so that the medium conveyed by the connected hoses or the rigid line cannot escape to the outside.
In another embodiment of the invention, the locking element is provided with an end stop that cooperates with the coupling housing, so that the locking element is not introduced too far into the opening.
In one embodiment of the invention, the coupling housings, the plug-in nipple, and/or the locking element are made of a synthetic material, so that good corrosion resistance as well as a sufficient temperature stability are achieved. Tests were conducted with special synthetic materials in which a flame resistance at 600° over 8 min, a possible continuous temperature of 150° and a brief temperature load up to 200° C. by way of exception also 300°C., was exhibited.


REFERENCES:
patent: 4244608 (1981-01-01), Stuemky
patent: 4524995 (1985-06-01), Bartholomew
patent: 4804213 (1989-02-01), Guest
patent: 5374088 (

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rapid-action coupling for hoses or rigid lines in motor... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rapid-action coupling for hoses or rigid lines in motor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rapid-action coupling for hoses or rigid lines in motor... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3060953

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.