Multicellular living organisms and unmodified parts thereof and – Nonhuman animal
Patent
1992-12-16
1996-08-13
Ziska, Suzanne E.
Multicellular living organisms and unmodified parts thereof and
Nonhuman animal
800DIG1, 800DIG4, 536 2353, 536 235, 536 231, 4241841, 4351723, 4353201, C12N 1500, C07H 2164, A61K 3900
Patent
active
055458068
ABSTRACT:
The invention relates to transgenic non-human animals capable of producing heterologous antibodies and transgenic non-human animals having inactivated endogenous immunoglobulin genes. In one aspect of the invention, endogenous immunoglobulin genes are suppressed by antisense polynucleotides and/or by antiserum directed against endogenous immunoglobulins. Heterologous antibodies are encoded by immunoglobulin genes not normally found in the genome of that species of non-human animal. In one aspect of the invention, one or more transgenes containing sequences of unrearranged heterologous human immunoglobulin heavy chains are introduced into a non-human animal thereby forming a transgenic animal capable of functionally rearranging transgenic immunoglobulin sequences and producing a repertoire of antibodies of various isotypes encoded by human immunoglobulin genes. Such heterologous human antibodies are produced in B-cells which are thereafter immortalized, e.g., by fusing with an immortalizing cell line such as a myeloma or by manipulating such B-cells by other techniques to perpetuate a cell line capable of producing a monoclonal heterologous antibody. The invention also relates to heavy and light chain immunoglobulin transgenes for making such transgenic non-human animals as well as methods and vectors for disrupting endogenous immunoglobulin loci in the transgenic animal.
REFERENCES:
patent: 5175384 (1992-12-01), Krimpenfort et al.
patent: 5434340 (1995-07-01), Krimpenfort et al.
Alt et al., Immunoglobulin genes in transgenic mice, TIG--Aug. 1985.
Berman et. al., Content and organization of the human Ig V.sub.H locus: definition of three new V.sub.H families and linkage to the Ig C.sub.H locus, The EMBO J. 7:727-738 (1988).
Berton et. al., Synthesis of germ-line .gamma.1 immunoglobulin heavy-chain transcripts in resting B cells: Induction by interleukin 4 and inhibition by interferon .gamma., Proc. Natl. Acad. Sci. (U.S.A) 86:2829-2833 (1989).
Bollag et al., Homologous recombination in mammalian cells, Annu. Rev. Genet. 23:199-225 (1989).
Bruggemann et al., Human antibody production in transgenic mice: expression from 100 kb of the human IgH locus, Eur. J. Immunol. 21:1323-1326 (1991).
Bruggemann et al., A repertoire of monoclonal antibodies with human heavy chains from transgenic mice, Proc. Natl. Acad. Sci. USA 86:6709-6713 (1989).
Bucchini et al., Rearrangement of a chicken immunoglobulin gene occurs in the lymphoid lineage of transgenic mice, Nature 326:409-411 (1987).
Capecchi, The new mouse genetics: Altering the genome by gene targeting, TIG 5:70-76 (1989).
Capecchi, Altering the genome by homologous recombination, Science 244:1288-1292 (1989).
Coffman et. al., T cell activity that enhances polyclonal IgE production and its inhibition by interferon-.gamma., J. Immunol. 136:949-954 (1986).
Coffman et al., A mouse T cell product that preferentially enhances IgA production, J. Immunol. 139:3685-3690 (1987).
Doetschman et al., Targetted correction of a mutant HPRT gene in mouse embryonic stem cells, Nature 330:576-578 (1987).
Durdik et al., Isotype switching by a microinjected .mu. immunoglobulin heavy chain gene in transgenic mice, Proc. Natl. Acad. Sci. USA 86:2346-2350 (1989).
Esser and Radbruch, Rapid induction of transcription of unrearranged S.gamma.1 switch regions in activated murine B cells by interleukin 4, The EMBO J. 8:483-488 (1989).
Forni, extensive splenic B cell activation in IgM-transgenic mice, Eur. J. Immunol. 20:983-989 (1990).
Gerstein et al., Isotype switching of an immunoglobulin heavy chain transgene occurs by dna recombination between different chromosomes, Cell 63:537-548 (1990).
Goodhart et al., Rearrangement and expression of rabbit immunoglobulin .kappa. light chain gene in transgenic mice, Proc. Natl. Acad. Sci. (U.S.A.) 84:4229-4233 (1987).
Gordon, Transgenic mice in immunology, The Mount Sinai Journal of Medicine 53:223-231 (1986).
Hagman et al., Inhibition of immunoglobulin gene rearrangement by the expression of a .lambda.2 transgene, J. Exp. Med. 169:1911-1929 (1989).
Ichihara et al., Organization of human immunoglobulin heavy chain diversity gene loci, The EMBO J. 7:4141-4150 (1988).
Iglesias et al., Expression of immunoglobulin delta chain causes allelic exclusion in transgenic mice, Nature 330:482-484 (1987).
James and Bell, Human monoclonal antibody production current status and future prospects, J. of Immunol. Methods 100:5-40 (1987).
Jasin and Berg, Homologous integration in mammalian cells without target gene selection, Genes & Development 2:1353-1363 (1988).
Kenny et al., Alternation of the B cell surface phenotype, immune response to phosphocholine and the B cell repertoire in M167 .alpha. plus .kappa. transgenic mice, J. of Immunol. 142:4466-4474 (1989).
Kitamura et al., A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin .mu. chain gene, Nature 350:423-426 (1991).
Koller and Smithies, Inactivating the .beta..sub.2 -microglobulin locus in mouse embryonic stem cells by homologous recombination, Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989).
Lin et al., Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences, Proc. Natl. Acad. Sci. USA 82:1391-1395 (1985).
Linton et al., Primary antibody-forming cells secondary B cells are generated from separate precursor cell subpopulations, Cell 59:1049-1059 (1989).
Lo et al., Expression of mouse IgA by transgenic mice, pigs and sheep, Eur. J. Immunol. 21:1001-1006 (1991).
Lorenz et al., Physical map of the human immunoglobulin k locus and its implications for the mechanisms of V.sub.K -J.sub.K rearrangement, Nucl. Acids Res. 15:9667-9676 (1987).
Lutzker and Alt, Structure and expression of germ line immunoglobulin .gamma.2b transcripts, Mol. Cell Biol. 8:1849-1852 (1988).
Mansour et al., Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes, Nature 336:348-352 (1988).
Mills et.al., Sequences of human immunoglobulin switch regions: implications for recombination and transcription, Nucl. Acids. Res. 18:7305-7316 (1991).
Mills et al., DNase I hypersensitive sites in the chromatin of human .mu. immunoglobulin heavy-chain genes, Nature 306:809-812 (1983).
Mowatt et. al., DNA sequence of the murine .gamma.1 switch segment reveals novel structural elements, J.Immunol. 136:2674-2683 (1986).
Muller et al., Membrane-bound IgM Obstructs B cell development in transgenic mice, Eur. J. Immunol. 19:923-928 (1989).
Neuberger et al., Isotype exclusion and transgene down-regulation in immunoglobulin-.lambda. transgenic mice, Nature 338:350-352 (1989).
Nikaido et al., Nucleotide sequences of switch regions of immunoglobulin C and C genes and their comparison, J. Biol. Chem. 257:7322-7329 (1982).
Nikaido et al., Switch region of immunoglobulin C.mu. gene is composed of simple tandem repetitive sequences, Nature 292:845-848 (1981).
Nussenzweig et al., A human immunoglobulin gene reduces the incidence of lymphomas in c-Myc-bearing transgenic mice, Nature 336:446-450 (1988).
Nussenzweig et al., Allelic exclusion in transgenic mice carrying mutant human IgM genesJ. Exp. Med. 167:1969 (1988).
Oettinger et al., RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination, Science 248:1517-1523 (1990).
Petters, transgenic mice in immunological research, Vet. Immunol. Immunopath. 17:267-278 (1987).
Rabbits et. al., Human immunoglobulin heavy chain genes: evolutionary comparisons of C.mu., C.delta. and C.gamma. genes and associated switch sequences, Nucl. Acids Res. 9:4509-4524 (1981).
Rath et al., Quantitative analysis of idiotypic mimicry and allelic exclusion in mice with a .mu. Ig Transgene, J. of Immunol. 143:2074-2080 (1989).
Rath et al., B cell abnormalities induced by a .mu. ig transgene extend to L chain isotype usage, J. of Immunol. 146:2841 (1991).
Ravetch et al., Evolutionary approach to the question of immunoglobulin heavy chain switching: Evidence from cloned human and mouse genes, Proc. Natl. Acad. Sci. (U.S.A.) 77:6
Kay Robert M.
Lonberg Nils
GenPharm International Inc.
Ziska Suzanne E.
LandOfFree
Ransgenic non-human animals for producing heterologous antibodie does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ransgenic non-human animals for producing heterologous antibodie, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ransgenic non-human animals for producing heterologous antibodie will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1049218