Ranking oriented query clustering and applications

Data processing: database and file management or data structures – Database and file access – Preparing data for information retrieval

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C707SE17089, C707SE17112

Reexamination Certificate

active

07962487

ABSTRACT:
Techniques described herein allow for suggesting creation of tools for improving search engine performance. Specifically, these tools focus on producing more relevant search engine results via a URL-based query clustering method. These tools first extract tokens from Uniform Resource Locators associated to search queries. With these tokens, these tools form query clusters of common tokens. The resulting clusters can be used to help understand the similarities in user search queries via URL-based cluster queries to produce more relevant search results.

REFERENCES:
patent: 5864845 (1999-01-01), Voorhees et al.
patent: 6363373 (2002-03-01), Steinkraus
patent: 6718328 (2004-04-01), Norris
patent: 6922691 (2005-07-01), Flank
patent: 7072890 (2006-07-01), Salerno et al.
patent: 7149732 (2006-12-01), Wen et al.
patent: 7194454 (2007-03-01), Hansen et al.
patent: 7877480 (2011-01-01), Wardrop
patent: 2005/0120211 (2005-06-01), Yokoyama
patent: 2008/0040094 (2008-02-01), Wolgemuth et al.
patent: 2008/0077570 (2008-03-01), Tang et al.
patent: 2009/0089278 (2009-04-01), Poola et al.
patent: 2009/0327304 (2009-12-01), Agarwal et al.
Anick, “Using Terminological Feedback for Web Search Refinement—A Log-based Study”, retrievd on Oct. 23, 2008 at <<http://portal.acm.org/ft—gateway.cfm?id=860453&type=pdf&coll=GUIDE&dl=GUIDE&CFID=7442126&CFTOKEN=59944993>>, ACM SIGIR'03 (1-58113-646-3/03/0007), 2003, pp. 88-95.
Baeza-Yates, et al., “Query Clustering for Boosting Web Page Ranking”, retrieved on Oct. 23, 2008 at <<http://www. springerlink.com/content/p4v0vatky85aj2f7/fulltext.pdf>>, Springer-Verlag: AWIC 2004 (LNAI 3034), 2004, pp. 164-175 .
Bedi, et al., “Improving Information Retrieval Precision using Query Log Mining and Information Scent”, retrieved on Oct. 23, 2008 at <<http://www.ansijournals.com/itj/2007/584-588.pdf>>, Information Technology Journal, vol. 6, No. 4, 2007, pp. 584-588.
Beeferman, et al., “Agglomerative Clustering of a Search Engine Query Log”, retrieved on Oct. 23, 2008 at <<http:// delivery.acm.org/10.1145/350000/347176/p407-beeferman.pdf?key1=347176&key2=4078374221&coll=GUIDE&dl=GUIDE&CFID=7444227&CFTOKEN=99027375>>, ACM KDD 2000 (1-58113-233-6/00/08), 2000, pp. 407-416.
Beitzel, et al., “Automatic Web Query Classification using Labeled and Unlabeled Training Data”, retrieved on Oct. 23, 2008 at <<http://www.ir.iit.edu/publications/downloads/p294-beitzel.pdf>>, ACM SIGIR'05 (1-59593-034-5/05/0008), 2005, pp. 581-582.
Beitzel, et al., “Improving Automatic Query Classification via Semi-supervised Learning”, retrieved on Oct. 23, 2008 at <<http://www.ir.iit.edu/publications/downloads/beitzels-Classification.pdf>>, IEEE ICDM '05, 2005, pp. 42-29.
Beitzel, et al., “Varying Approaches to Topical Web Query Classification”, retrieved on Oct. 23, 2008 at <<http://delivery.acm.org/10.1145/1280000/1277907/p783-beitzel.pdf?key1=1277907&key2=4488374221&coll=GUIDE&dl=GUIDE&CFID=7444384&CFTOKEN=48907363>>, ACM SIGIR'07 (978-1-59593-597-7/07/0007), 2007, pp. 783-784.
Broder, et al., “Robust Classification of Rare Queries using Web Knowledge”, retrieved onn Oct. 23, 2008 at <<http://delivery.acm.org/10.1145/1280000/1277783/p231-broder.pdf?key1=1277783&key2=3519374221&coll=GUIDE&dl=GUIDE&CFID=7444827&CFTOKEN=53527331>>, ACM SIGIR'07 (978-1-59593-597-7/07/0007), 2007, pp. 231-238.
Burges, et al., “Learning to Rank Using Gradient Descent”, retrieved on Oct. 23, 2008 at <<http://delivery.acm.org/10.1145/1110000/1102363/p89-burges.pdf?key1=1102363&key2=3429374221&coll=GUIDE&dl=GUIDE&CFID=7444954&CFTOKEN=36662799>>, ACM ICML '05, 2005, pp. 89-96.
Chan, et al., “Clustering Search Engine Query Log Containing Noisy Clickthroughs”, retrieved on Oct. 24, 2008 at <<http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01266134>>, IEEE Saint'04 (0-7695-2068-5/04), 2004, pp. 305-308.
Chien, et al., “Semantic Similarity between Search Engine Queries using Temporal Correlation”, retrieved on Oct. 23, 2008 at <<http://www2005.org/cdrom/docs/p2.pdf>>, ACM WWW 2005 (1-59593-046-9/05/0005), 2005, pp. 2-11.
Chuang, et al., “Towards Automatic Generation of Query Taxonomy: A Hierarchical Query Clustering Approach”, IEEE International Conference on Data Mining, 2002, 8 pages.
Cui, et al., “Probabilistic Query Expansion using Query Logs”, retrieved on Oct. 23, 2008 at <<http://research.microsoft.com/jrwen/jrwen—files/publications/QE-WWW2002.pdf>>, ACM WWW 2002 (1-58113-449-5/02/0005), 2002, pp. 325-332.
Fitzpatrick, et al., “Automatic Feedback using Past Queries: Social Searching?”, retrieved on Oct. 23, 2008 at <<http://delivery.acm.org/10.1145/260000/258597/p306-fitzpatrick.pdf?key1=258597&key2=3700474221&coll=GUIDE&d1=GUIDE&CFID=7665436&CFTOKEN=35208353>>, ACM SIGIR '97 (0-89791-836-3/97/7), 1997, pp. 306-313.
Gravano, et al., “Categorizing Web Queries According to Geographical Locality”, retrived on Oct. 23, 2008 at <<http://www1.cs.columbia.edu/gravano/Papers/2003/cikm03.pdf>>, ACM CIKM'03 (1-58113-723-0/03/0011), 2003, pp. 325-333.
Hearst, et al., “Reexamining the Cluster Hypothesis: Scatter/Gather on Retrieval Results”, retrieved on Oct. 24, 2008 at <<http://people.ischool.berkeley.edu/hearst/papers/sg-sigir96/sigir96.html>>, ACM SIGIR '96, 1996, pp. 76-84.
Jarvelin, et al., “IR Evaluation Methods for Retrieving Highly Relevant Documents”, retrieved on Oct. 23, 2008 at <<http://www.info.uta.fi/tutkimus/fire/archive/KJJKSIGIR00.pdf>>, ACM SIGIR (1-58113-226-3/00/007), 2000, 41-48.
Jones, et al., “Generating Query Substitutions”, retrieved on Oct. 23, 2008 at <<http://www.cs.cmu.edu/rosie/papers/jones-www2006-generating-query-subs.pdf>>, ACM IW3C2 WWW 2006 (1-59593-323-9/06/0005), 2006, pp. 387-396.
Kang, et al., “Query Type Classification for Web Document Retrieval”, retrieved on Oct. 23, 2008 at <<http://delivery.acm.org/10.1145/870000/860449/p64-kang.pdf?key1=860449&key2=9730474221&coll=GUIDE&dl=GUIDE&CFID=7446652&CFTOKEN=48657202>>, ACM SIGIR'03 (1-58113-646-3/03/0007), 2003, pp. 64-71.
Mitra, et al., “Improving Automatic Query Expansion”, retrieved on Oct. 23, 2008 at <<http://delivery.acm.org/10.1145/300000/290995/p206-mitra.pdf?key1=290995&key2=6440474221&coll=GUIDE&dl=GUIDE&CFID=7446754&CFTOKEN=83792002>>, ACM SIGIR '98 (1-58113-015-58/98), 1998, pp. 206-214.
Qiu, et al., “Concept based Query Expansion”, retrieved on Oct. 23, 2008 at <<http://delivery.acm.org/10.1145/170000/160713/p160-qiu.pdf?key1=160713&key2=1490474221&coll=GUIDE&dl=GUIDE&CFID=7447430&CFTOKEN=95153645>>, ACM SIGIR'93 (0-89791-605-0/93/0006/0160), 1993, pp. 160-169.
Raghavan, et al., “On the Reuse of Past Optimal Queries”, retrieved on Oct. 23, 2008 at <<http://delivery.acm.org/10.1145/220000/215381/p344-raghavan.pdf?key1=215381&key2=6701474221&coll=GUIDE&dl=GUIDE&CFID=7447593&CFTOKEN=50811153>>, ACM SIGIR'95 (0-89791-714-6/95/07), 1995, pp. 344-350.
Ruthven, “Re-examining the Potential Effectiveness of Interactive Query Expansion”, retrieved on Oct. 23, 2008 at <<http://delivery.acm.org/10.1145/870000/860475/p213-ruthven.pdf?key1=860475&key2=8311474221&coll=GUIDE&dl=GUIDE&CFID=7667167&CFTOKEN=32513865

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ranking oriented query clustering and applications does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ranking oriented query clustering and applications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ranking oriented query clustering and applications will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2680373

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.