Random number generator and method for same

Cryptography – Key management – Having particular key generator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C380S044000, C708S255000, C708S250000

Reexamination Certificate

active

06215874

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to random number generation and more particularly relates to a method of generating a sequence random numbers using noise presented to or from within a charge coupled device (CCD) or the like.
BACKGROUND OF THE INVENTION
Computer security is fast becoming an important issue. With the proliferation of computers and computer networks into all aspects of business and daily life—financial, medical, education, government, and communications—the concern over secure file access is growing. One method of providing security from unauthorized access to files is by implementing encryption and cipher techniques. These techniques convert data into other corresponding data forms in a fashion that is reversible. Once encrypted, the data is unintelligible unless first decrypted. RSA, DES, PGP, and CAST are known encryption techniques that are currently believed to provide sufficient security for computer communication and files.
Each of the encryption techniques uses a key or cipher. Such a key is crucial to the encryption/decryption process. Anyone with a correct key, can access information that has previously been encrypted using that key. The entry of the key from the keyboard is impractical since a key remembered by a user for entry is liable to be discovered by an individual desiring unauthorized access to existing encrypted files.
In DES encryption, the key is a numerical value, for example 56 bits in length. Such a key can be used to encrypt and subsequently to decrypt data. The security of the data once encrypted is sufficient that the key is required to access the data in an intelligible form. Thus, the security of the data is related to the security of the key.
In an optical fingerprint input transducer or sensor, the finger under investigation is usually pressed against a flat surface, such as a side of a glass plate, and the ridge and valley pattern of the finger tip is sensed by a sensing means such as an interrogating light beam.
Various optical devices are known with employ prisms upon which a finger whose print is to be identified is placed. The prism has a first surface upon which a finger is placed, a second surface disposed at an acute angle to the first surface through which the fingerprint is viewed and a third illumination surface through which light is directed into the prism. In some cases, the illumination surface is at an acute angle to the first surface, as seen for example, in U.S. Pat. Nos. 5,187,482 and 5,187,748. In other cases, the illumination surface is parallel to the first surface, as seen for example, in U.S. Pat. Nos. 5,109,427 and 5,233,404. Fingerprint identification devices of this nature are generally used to control the building-access for information-access of individuals to buildings, rooms, and devices such as computer terminals.
In capacitive fingerprint imaging devices, a fingertip is pressed against an array of sensing electrodes. Each electrode forms one of two electrodes in a capacitor. Each capacitor is generally pre-charged to provide a known voltage. The placement of the fingertip on the sensing electrodes results in changes to the induced voltages or capacitances and therefore allows for imaging of the fingerprint. Devices of this type are well known in the art.
The use of random numbers has become popular in many aspects of computer science. An annealing algorithm generates and entire process based on an initial random seed. The seed allows the process to be repeated, but its random nature allows the annealing process to run differently each time. In encryption technology, random keys are also used for generating private and public keys. Unfortunately, computers are only capable of generating pseudo random numbers. These numbers may follow known sequences for they may rely on date and time information making them predictable.
Several electronic approaches to random number generation have been proposed. It is known to use a resistive circuit that generates a voltage or current to be measured that lies at an exact value. Voltages above and below the value are interpreted as a one and a zero, respectively. Of course, it will be apparent to those of skill in the art that the selection of one to be above the threshold is arbitrary and that the respective interpretation can be otherwise. The random nature of the binary value is ensured based on the laws of quantum physics. Unfortunately, such a system is influenced by external factors such as temperature, humidity, etc. Also, electronic random number generators for use with a computer are often costly.
When conditions change, existing devices often become unreliable. For example, a resistance based device often produces a sequence of “random” numbers of a dubious nature when temperature changes are significant. As is well known, this is often the case within computer systems, where bright lights are used, near doorways, in electronic devices, in automobiles, and so forth. As such, as more flexible random number generating device and method is needed.
OBJECT OF THE INVENTION
It is an object of this invention to provide a cost effective means of generating a random number having a configurable distribution.
SUMMARY OF THE INVENTION
In accordance with the invention, there is provided, a method of generating a number within a random sequence of numbers using a device comprising a plurality of sensors. The method comprises of steps of:
a) sensing, with a first transducer, data to provide a first sensed data signal comprising noise presented to or from within the device;
b) sensing, with a second transducer, data to provide a second sensed data signal comprising noise presented to or from within the device; and,
c) determining a value based substantially on the noise within each of the first sensed data signal and the second sensed data signal.
A further embodiment comprises the additional steps of:
d) sensing, with a third transducer, data to provide a third sensed data signal comprising noise presented to or from within the device;
e) sensing, with a fourth transducer, data to provide a fourth sensed data signal comprising noise presented to or from within the device;
f) determining a second value based substantially on the noise within each of the third sensed data signal and the fourth sensed data signal; and,
g) based on the second value modifying the determined value to provide the number.
In accordance with another aspect of the invention there is further provided a device for generating a random number comprising:
an array of input transducers disposed to accept input information and to each provide a signal in dependence upon the input information provided thereto; and,
a processor for receiving at least two of the signals from the input transducers in the array of input transducers and for determining a value substantially based on a portion of the signals that is non-repeating and non-predictable in nature.
In accordance with the invention there is further provided a device for generating a random number comprising: an array of input transducers disposed to accept input information and provide at least a signal in dependence upon the input information provided to each of the input transducers from the array of input transducers; and, a processor for receiving the at least a signal and for determining a non-predictable and non-repeating value based substantially on a portion of the information received at a transducer from the array of transducers, said portion being non-predictable and non-repeating in nature.
The advantages of a system in accordance with this invention are numerous. For example, random number generation will vary effectively from computer to computer thereby decreasing chances of predicting random number values.
It is a significant advantage that a device according to the invention is capable of calibration and reconfiguration during normal use.
It is a significant advantage of the present invention that a single transducer array serves multiple purposes.


REFERENCES:
patent: 3706941 (1972-12-01), Cohn
patent: 391

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Random number generator and method for same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Random number generator and method for same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Random number generator and method for same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2457171

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.