Raman fiber amplifier

Optical: systems and elements – Optical amplifier – Raman or brillouin process

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06417959

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to fiber-optic communications networks, and more particularly, to Raman fiber amplifiers for use in optical communications networks.
In optical networks that use wavelength division multiplexing, multiple wavelengths of light are used to support multiple communications channels on a single fiber. Optical amplifiers are used in such networks to amplify optical signals that have been subject to attenuation over fiber-optic links. A typical amplifier may include erbium-doped fiber amplifier components that are pumped with diode lasers. Raman amplifiers have also been used that provide optical gain through stimulated Raman scattering.
The gain spectrum of a Raman-pumped fiber amplifier that is pumped at a single wavelength is not flat. Unless the gain spectrum of the Raman amplifier is flattened, different wavelengths of light will be amplified by different amounts. This is undesirable, particularly in arrangements in which many amplifiers are cascaded in a communications link.
One way in which to flatten the gain spectrum of a Raman amplifier is to use a gain equalization filter. A gain equalization filter may be inserted in the optical path of the Raman amplifier. The gain equalization filter introduces losses in the portions of the spectrum in which the Raman gain is greatest, thereby flattening the Raman amplifier gain spectrum. However, the use of a gain equalization filter to flatten the Raman gain spectrum may increase the noise figure of the amplifier.
Another way in which to flatten the gain spectrum of a Raman amplifier is to use multiple pump wavelengths. The pump wavelengths may be selected so that the Raman gain peaks produced by each pump wavelength overlap. The overlapping gain peaks produce an overall gain spectrum that is relatively flat, but this may not be the most efficient way in which to generate a desired gain spectrum.
It is an object of the present invention to provide a Raman amplifier that reduces or eliminates the need for gain equalization filters.
SUMMARY OF THE INVENTION
This and other objects of the invention are accomplished in accordance with the present invention by providing Raman fiber amplifiers in which multiple pump wavelengths are used. An amplifier may be used to amplify optical signal channels over a range of wavelengths. Some of the pump wavelengths may be selected to create Raman gain in this range. Other pump wavelengths may be selected to create Raman loss in this range. Different pump powers may be used at each pump wavelength. Using both Raman gain and Raman loss contributions to achieve a given gain spectrum may be more efficient than using pumping schemes that only use Raman gain contributions.
Further features of the invention and its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments.


REFERENCES:
patent: 4881790 (1989-11-01), Mollenauer
patent: 5623508 (1997-04-01), Grubb et al.
patent: 5673280 (1997-09-01), Grubb et al.
patent: 5959750 (1999-09-01), Eskildsen et al.
patent: 6052393 (2000-04-01), Islam
patent: 6081366 (2000-06-01), Kidorf et al.
patent: 6088152 (2000-07-01), Berger et al.
patent: 6101024 (2000-08-01), Islam et al.
patent: 6115174 (2000-09-01), Grubb et al.
patent: 6147794 (2000-11-01), Stentz
patent: 6151160 (2000-11-01), Ma et al.
patent: 6163396 (2000-12-01), Webb
patent: 6163636 (2000-12-01), Stentz et al.
patent: 6178038 (2001-01-01), Taylor et al.
patent: 6181464 (2001-01-01), Kidorf et al.
patent: 6275313 (2001-08-01), Denkin et al.
patent: 6335820 (2002-01-01), Islam
patent: 6344922 (2002-02-01), Grubb et al.
patent: 6356383 (2002-03-01), Cornwell et al.
patent: 6356384 (2002-03-01), Islam
patent: 6359725 (2002-03-01), Islam
patent: 2001/0036004 (2001-11-01), Ackerman et al.
patent: WO 99/66607 (1999-12-01), None
patent: WO 00/49721 (2000-08-01), None
patent: WO 00/73849 (2000-12-01), None
Zhu et al. “1.28 Tbit/s (32 ×40 Gbit/s) Transmission over 1000 km NDSF Employing Distributed Raman Amplification and Active Gain Flattening” Electronics Letters, vol. 37, No. 1, p. 43-45 (Jan. 4, 2001).
Emori et al. “Cost-Effictive Depolarization Diode Pump Unit Designed for C-band Flat Gain Raman Amplifiers to Control EDFA Gain Profile” p. 106-108.
Takeda et al. “Active Gain Tilt Equalization by Preferentially 1.43 &mgr;m- or 1.48&mgr;m- Pumped Raman Amplification” OSA Optical Amplifiers and their Applications, vol. 30, p. 101-105 (1999).
Masuda “Review of Wideband Hybrid Amplifiers” 25thOptical Fiber Communication Conference, Technical Digest, p. 2-4, (Mar. 7, 2000).
Lewis et al. “Low-Noise High Gain Dispersion Compensating Broadband Raman Amplifier” 25thOptical Fiber Communication Conference, Technical Digest, p. 5-7, (Mar. 7, 2000).
Fludger et al. “Inline Loopbacks for Improved OSNR and Reduced Double Rayleigh Scattering in Distributed Raman Amplifiers” OFC.
Stentz “Progress on Raman Amplifiers” OFC '97 Technical Digest, p. 343.
Hansen et al. “Raman Amplification for Loss Compensation in Dispersion Compensating Fibre Modules” Electronics Letters, vol. 34, No. 11, p. 1136-1137, May 28, 1998.
Emori et al. “Broadband Lossless DCF using Raman Amplification Pumped by Multichannel WDM Laser Diodes” Electronics Letters, vol. 34, No. 22, Oct. 29, 1998.
Neilson et al. “10 Gbit/s Repeaterless Transmission at 1.3 &mgr;m with 55.1-dB Power Budget using Raman Post and Preamplifier” OFC '98 Technical Digest, p. 52-53.
Stentz et al. “Raman Amplifier with Improved System Performance” OFC '96 Technical Digest, p. 16-17.
Wey et al. Crosstalk Bandwidth in Backward Pumped Fiber Raman Amplifiers. IEEE Photonics Technology Letters, vol. 11, No. 11, Nov. 1999, pp. 1417-1419.*
Seo et al. Compensation of Raman-Induced Crosstalk Using a Lumped Germanosillicate Fiber Raman Amplifier in the 1.571-1.591 micrometer Range. IEEE Photonics Technology Letters, vol. 13, No. 1, Jan. 2001, pp. 28-30.*
Mazurczyk et al. Accumulation of Gain Tilt in WDM Amplified Systems Due to Raman Crosstalk. IEEE Photonics Technology Letters, vol. 12, No. 11, Nov. 2000, pp. 1573-1575.*
Emori et al. 100nm Bandwidth Flat Gain Raman Amplifiers Pumped and Gain-Equalized by 12-Wavelength-Cahnnel WDM High Power Laser Diodes. OFCC, 1999. pp. PD19-1-PD19-3.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Raman fiber amplifier does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Raman fiber amplifier, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Raman fiber amplifier will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2844318

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.