Radiotherapy treatment using medical axis transformation

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C378S065000

Reexamination Certificate

active

06201988

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to methods for guiding radiation treatments of animals, especially human patients. The present invention is particularly related to methods for guiding the distribution of radiation in medical radiotherapy processes which generate spherical doses of radiation or, more properly, approximately spherical distributions of radiation.
2. Background of the Art
Tumors of the brain are regarded as special candidates for precision conformal radiotherapy. Historically the term “radiosurgery,” introduced by Leksell (Leksell, L. 1951, “The Stereotactic Method and Radiosurgery of the Brain,”
Acta Chir Scand
102:316-319), was used to describe the method by which many narrow radiation beams were used to irradiate intracranial structures from many angels as an alternative to surgery. The Leksell 201 source
60
Co Gamma Knife®

used for such radiosurgery, is shown in
FIG. 1
(and as with OUR Scientific International, Inc., New York, N.Y., “Rotating Gamma System”). These 201 sources are contained in an upper hemispherical shield. All sources are focused to a single point at a source-to-focus distance of 403 mm. The central beam is at an angle of 55° to the horizontal plane. The sources lie in an arc of ±48 about this central ray in the long axis of the treatment unit and at an arc ±80° along the transverse axis to the patient couch. The final precise collimation is achieved by selection of one of four interchangeable collimator helmets with 201 channels aligning with the sources that produce 4, 8, 14, or 18 mm diameter fields at the focus (Wu, A. 1992, “Physics and Dosimetry of the Gamma Knife,” Neurosurgery Clinics of North America, Vol. 3(1):35-50). A stereotactic frame is attached to the patient under local anesthesia and then the frame is positioned into the collimating channel so that the tumor to be treated is at the focal point of the beams.
Treatment planning optimization for radiation therapy, including, but not limited to gamma knife radiosurgery, linear accelerator treatment (either modified or specifically designed for radiosurgery), Brachy treatment (where radiation dose distributions are supplied by small sealed radiation sources, called seeds), and like processes which seek to distribute radiation over bulk (volumetric versus surface area) portions of a patient, as in the treatment of tumors, benign growths, malignant growths, etc., is aimed at maximizing the dose to the target volume while minimizing the dose to adjacent normal tissues. Since radiation deposits energy all along its pathway, treatment planning optimization is a constrained optimization problem, i.e., primarily comprised of two competing limitations on the dose: 1) maximization for the targets, and 2) minimization for the normal tissues. The index of the dose given to a particular area as compared to the target dose which has been determined or established is referred to as homogeneity. In the target areas, the homogeneity is desirably between 100 to 50%. The area around the target area is the penumbra or shadow region of the exposure, and receives a dose measured as homogeneity usually in the range of 50% to 30% of the 100% of the target dose. The percent dose is measured relative to the dose at the focus of the radiation equipment. Percent dose is relative to dose at the focus. The target dose and the dose at the focus are preselected by the operator according to the specific radiation therapy intended by the equipment.
It has been observed that multiple shot treatment may deteriorate both penumbra and homogeneity compared with single shot treatment. This is due to overlap of adjacent shots and the less than optimal shot weights. Pla et al. (Pla, C. Podgorsak, E. B., Pla, M., Souhami, L., Clark, B. G., and Carson, L. J., 1995, “Considerations on the use of Multiple Isocenters in Stereotactic Radiosurgery,”
Med Phys,
Vol. 22, No. 5:765) recently discussed the problem but did not provide any useful solution. Mathematically, the optimization process can be represented as
P

(
N
,
S
1

(
d
,
x
)
,



,
S
N

(
d
,
x
)
)
=
P
N

(
R
)

N
=
min

(
n
)
,



n
i
=
1

S
i

(
d
,
x
)

V

(
R
)
,
where N is the number of shots being used, S
i
is the ith shot, and d and x are the shot size and position, respectively. Thus, the number of shots and the position and size of each shot have to be included as parameters for the optimization, and must be optimized simultaneously. Clearly, the irregularity and size of a target volume greatly influence the number of shots needed and the sized of the shots being used to optimize the treatment.
SUMMARY OF THE INVENTION
The present invention describes a method and apparatus for improving the performance of radiotherapy procedures where doses of radiation to a bulk or three-dimensional target are desired, and where a spherical shot or individual dose of radiation is applied by the apparatus or procedure used in the treatment process. The process generally involves the examination (mapping, non-invasive image capturing, as by X-ray, NMR, sonogram, etc.) of a bulk target for radiation therapy, the determination of target lines representing the loci of spheres which, when distributed with various sizes along said target line, fill the bulk target efficiently, without extending areas strongly dosed by radiation greatly outside the bulk target, determining a level of radiation which is therapeutically effective when directed into volumes of the bulk target which are to be therapeutically treated, determining a distribution of shots or doses of radiation which can be directed at said bulk target such that radiation within each shot or dose which exceeds a preselected percentage of said level of radiation which is therapeutically effective by more than a fixed percentage of each dose or shot (e.g., no more than 80%, preferably no more than 65%, more preferably no more than 50%, and most preferably no more than 40%) of said radiation which is therapeutically effective, is not directed at areas outside of said bulk target.
In this invention, a novel method is introduced to solve this special optimization problem. The approach is to determine the configuration of shots according to the shape of the target. This automated procedure mimics manual planning and is logical, since for targets of identical volumes yet different shapes, small shots have to be used for complicated contours while large shots are suitable for regular shapes. In this new method, the medial axis transformation (skeletonization) is used to characterize the target shape and to determine the shot parameters (i.e., position, collimator size and weight). In this scheme, only skeleton points are considered for potential shot positions, and the corresponding shot size is provided by the skeletonization. Hence, the optimization in 3D is reduced to a 1D optimization problem with savings in computational time and mathematical complexity. The relationship between skeleton discs and the dose distributions they predict are discussed and the results of optimal planning and the corresponding dose distributions are presented.


REFERENCES:
patent: 5418715 (1995-05-01), Deasy
patent: 5754622 (1998-05-01), Hughes
patent: 5754623 (1998-05-01), Seki
patent: 6032066 (2000-02-01), Lu et al.
Zhu, Y., et al., “Accuracy Requirements of the Primary X-ray Spectrum in Dose Calculations Using FFT Convolution Techniques”,2389 Medical Physics; No. 4, 421-426, (Apr. 22, 1995).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radiotherapy treatment using medical axis transformation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radiotherapy treatment using medical axis transformation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiotherapy treatment using medical axis transformation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2505408

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.