Radioactively coated devices

Electrolysis: processes – compositions used therein – and methods – Electrolytic coating – Forming nonmetal coating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C205S043000, C205S224000, C205S263000, C205S266000, C205S269000, C205S271000, C205S291000

Reexamination Certificate

active

06793798

ABSTRACT:

The present invention relates to a method of producing a uniform distribution of radioisotope on a surface of a device. Furthermore, this invention is directed to coated products prepared using the disclosed method. More specifically, this invention is directed at permanently affixing a radioisotope of interest on the surface of a medical device.
BACKGROUND OF THE INVENTION
In recent years the treatment of medical ailments using implantable devices treated with radioactivity has gained prominence throughout the medical community. This is because the antiproliferative effect of ionizing radiation has been recognized, and used, to reduce proliferative cell growth including, cancer cell growth. An advantage of using radioactive devices to apply the radiotherapy treatment is that the dose of radioactivity is localized and minimizes the total overall dose given to the patient. For example, it has been proposed that over 95% of the radiation dose is delivered within 5-6 mm of the implantation site (Fischell et al 1996, which is incorporated by reference). Typical applications of medical devices, treated so that they are radioactive, include the treatment of localized lesions using radioactive implants, stents and/or brachytherapy wires, or for example, the treatment of aberrant cell growth using radioactively treated catheters, or catheters capable of accepting radioactive inserts (U.S. Pat. Nos. 5,213,561; 5,484,384; 5,498,227; 5,575,749; WO 93/04735; Violaris et al 1997; Carter et al 1996; Fischell et al 1996; Hehrlein et al 1995, Wong and Leon 1995, which are all incorporated by reference). Other medical devices that are useful in treatment of cancers and the like include implantable radioactive sources, such as seeds etc (U.S. Pat. Nos. 4,815,449; 4,994,013; 5,342,283; 5,405,309, which are incorporated by reference).
Several important criteria for a radioactively treated medical device have been identified. It is generally desired within the art that medical devices treated with radioactivity exhibit a uniform, homogeneous distribution of radioisotope over the length and breadth of the device, and that the radioisotope be permanently affixed to the device and not leach out and contaminate the surrounding tissues when the device is implanted. The production of radioactive seeds comprising encapsulated radioactive sources (see U.S. Pat. Nos. 4,815,449; 4,994,013; 5,163,896; 5,575,749; WO 93/04735, which are incorporated by reference) meets the criteria for reducing the potential of isotope leaching during in vivo use, however, these devices result in high levels of micro-localized emissions of radiation at the location of the radioactive seed within the implant. Therefore, a significant drawback with such a device is the non-homogeneous delivery of ionizing radiation. In order to produce devices that exhibit negligible leaching and uniform isotope distribution, methods of ion implantation, wherein the isotope is imbedded within the structure of the stainless steel or metal device have been explored (U.S. Pat. No. 5,059,166; Fischell et al 1996; Violaris et al 1997). In addition, yields are low and difficult to control. Heavier elements are more difficult to ionize, requiring highly specialized, low reliability ion sources. As well, radioactive contamination of the ion source makes maintenance a safety hazard. Typical methods for the preparation of radioactively treated medical devices include bombarding non-radioactive metallic substrate with radioactive ions or transmutating the base material with protons or neutrons creating radioisotopes internally (e.g. U.S. Pat. Nos. 4,702,228; 5,405,309). Published work on pilot scale manufacturing methods of stents produced in this manner have been disclosed (Fehsenfeld et al 1991), however, these approaches for the preparation of radioactive devices are limited since they are one-at-a-time processes or involve extensive specialized equipment. Furthermore, only a range of substrates can be used that are compatible with the implantation technologies thereby limiting the selection of materials that can be used for the preparation of radioisotope-treated devices. For example palladium, enriched with palladium-102 can be used for transmutation by exposure to neutron flux, to produce palladium-103 (e.g. U.S. Pat. No. 4,702,228). Transmutation technologies utilizing protons or neutrons would also result in significant undesirable isotopes and associated radiation exposure to the patient in vivo. Furthermore, recovery costs for transmutation methods are high.
A dominant barrier for the application of the use of radioactively treated medical devices has been the lack of a commercially viable method for affixing the radioisotope to a medical device that meets the low leaching criteria required within the art.
Several reports comment, or mention in passing, the option of coating the surface of a medical device such as a stent with a radioisotope of interest (e.g. U.S. Pat. No. 5,213,561; Hehrlein 1995). However, no methods are provided for the preparation of such coated devices, nor are there any methods provided that could be used for the preparation of coated devices that would be suitable for medical application. Rather due to the stringent requirements of negligible, or no, isotope leaching from the radioactive device (e.g. Fischell et al 1996), coated medical devices have received poor reception within the art as it is expected that the coated radioisotope will leach while implanted in vivo. The generally accepted levels of isotope leaching for a coated medical device must be less than about 5% of the total isotope applied to the substrate. Preferably the amount of leachable radioisotope is less than 2%, and more preferably less than 1% of the total isotope applied. For example, Hehrlein et al (1995) differentiate radioactive stents produced using ion implantation, the use of which they characterize within their study for medical applications, from a coated stent which they considered to be non-applicable and lacking medical utility due to the expected degree of leaching, especially if the medical device needs to flex in any manner. The idea being that a coating would simply flake off the surface of the device and possibly enter the circulatory system.
An alternate solution for treating the exterior of a device has also been proposed that involves electroplating the device, for example with gold-198 (U.S. Pat. Nos. 5,059,166; 5,167,617). This latter method applies to a limited range of isotopes and substrates that would be capable of being plated. It is, therefore well recognized within the art that present methods of coating devices with radioisotopes are deficient for the preparation of devices for use in radiotherapy.
There are many benefits associated with radiochemically coating devices. For example, the process is commercially scalable and allows for batch processing of high purity radioisotopes. Such a process combines uniform fixing and a pyrogenic attributes for in vivo use, which is particularly important for high volume production. A large range of radioactivity and isotopes can be affixed uniformly, producing homogeneous coatings on a device and allowing customization of product. This process has a high utilization of isotopes, making it clean and efficient compared to other affixing methods. Furthermore, radiochemical coating of devices could utilize isotopes that are otherwise not available in devices prepared by ion implantation or transmutation methods. Similarly, a range of surfaces and non-metallic materials including synthetics, or other bio-compatible materials, could be coated with radioisotopes of interest for use. Thus there is a need to develop a simple method for preparing radioactively treated medical devices so that the radiochemical coating exhibits negligible or no leaching of the isotope in a test solution, or when implanted.
One study has examined the relative absorption of ions in dilute aqueous solutions on glass and plastic surfaces in order to determine the degree of contamination of these surfaces following t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radioactively coated devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radioactively coated devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radioactively coated devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3197524

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.