Surgery – Instruments – Suturing needle
Patent
1997-04-22
1999-04-27
Jackson, Gary
Surgery
Instruments
Suturing needle
606228, 600 3, A61B 1704
Patent
active
058975730
ABSTRACT:
A radioactive suture for inhibiting an intimal hyperplastic response comprises a needle and a suture material having a radioactive beta-emitting element. This radioactive element is preferably chemically bonded to an organic substrate of the suture material. It is preferred that the radioactive suture material generates a beta radiation greater than 0.0002 uCi/cm. A first preferred method for producing the radioactive suture comprises the steps of placing the suture needle and the suture material in a sealed reaction chamber. Once the suture is in the reaction chamber, an ionized beta radiation emitting element, preferably ionized tritium, is introduced into the chamber. While in the chamber, an entropic exchange process begins wherein the beta radiation emitting element is exchanged for hydrogen molecules in the organic suture material. Once the desired level of tritium or other beta radiation emitting element is incorporated in the suture material, the reaction chamber is flushed. The suture is then rinsed, dried, removed from the reaction chamber, and packaged. In another aspect, a radioactive suture may be fabricated from an organic polypropylene material. A beta radiation emitting element, preferably tritium, is incorporated directly into a backbone of the organic polypropylene material. The now radioactive polypropylene material is extruded into a suture thread, which is attached to a suture needle and packaged for shipment and later use. Although not required by the present inventive method, the preferred embodiment of the organic polypropylene material comprises carbon 12.
REFERENCES:
patent: 3943933 (1976-03-01), Gertzman
Intracoronary Irradiation Markedly Reduces Restenosis After Balloon Angioplasty in a Porcine Model, Journal of the American College of Cardiology, vol. 23, No. 6, pp. 1491-1498, May 1994; Joseph G. Wiedermann, MD, Charles Marboe, MD, Howard Amols, PhD, Allan Schwartz, MD, FACC, Judah Weinberger, MD, PhD, FACC.
High Dose Rate Brachytherapy For Prevention Of Restenosis After Percutaneous Transluminal Coronary Angioplasty: Preliminary Dosimetric Test Of A New Source Presentation, Int. J. Radiation Biol. Phys., vol. 33, No. 1, pp. 211-215, 1995; Youri Popowski, M.D., Vitali Verin, M.D., Igor Papirov, Philippe Nouet, Michel Rouzand, Eugene Grob, Michael Schwager, Philippe Urban, M.D., Wilhelm Rutishauser, M.D. and John M. Kurtz, M.D.
Endovascular Irradiation--A New Method To Avoid Recurrent Stenosis After Stent Implantation In Peripheral Arteries: Technique And Preliminary Results, Int. J. Radiation Oncology Biol. Phys, vol. 29, No. 1, pp. 183-186, 1994; H.D. Bottcher, M.D., B. Schopohl, M.D., D. Liermann, M.D., J. Kollath, M.D. and I.A. Adamietz, M.D.
Prophylactic Endovascular Radiotherapy to Prevent Intimal Hyperplasia after Stent Implantation in Femoropopliteal Arteries, CardioVascular and Interventional Radiology, vol. 17, pp. 12-16, 1994; Dieter Liermann, Heinz D. Bottcher, Jurgen Kollath, Bernd Schopohl, Gerd Strassman, Ernst P. Strecker, Karl H. Breddin.
Rosenthal David
Sosnowski Stephen A.
LandOfFree
Radioactive medical suture and method of making the same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Radioactive medical suture and method of making the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radioactive medical suture and method of making the same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-682556