Radio frequency automated meter reading device

Communications: electrical – Continuously variable indicating – With meter reading

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S870070, C375S220000, C702S062000

Reexamination Certificate

active

06710721

ABSTRACT:

FIELD OF THE INVENTION
The present invention is generally related to utility meter reading devices, and more particularly to automated devices utilized to remotely and efficiently obtain meter readings of utility meters providing electric, gas and water service.
BACKGROUND OF THE INVENTION
Organizations which provide electric, gas and water service to users are commonly referred to as “utilities”. Utilities determine charges and hence billings to their customers by applying rates to quantities of the service that the customer uses during a predetermined time period, generally a month. This monthly usage is determined by reading the consumption meter located at the service point (usually located at the point where the utility service line enters the customer's house, store or plant) at the beginning and ending of the usage month. The numerical difference between these meter readings reveals the kilowatts of electricity, cubic feet of natural gas, or the gallons of water used during the month. Utilities correctly perceive these meters as their “cash registers” and they spend a lot of time and money obtaining meter reading information.
An accepted method for obtaining these monthly readings entails using a person (meter reader) in the field who is equipped with a rugged hand held computer, who visually reads the dial of the meter and enters the meter reading into the hand held. This method, which is often referred to as “electronic meter reading”, or EMR, was first introduced in 1981 and is used extensively today. While EMR products today are reliable and cost efficient compared to other methods where the meter reader records the meter readings on paper forms, they still necessitate a significant force of meter readers walking from meter to meter in the field and physically reading the dial of each meter.
The objective of reducing the meter reading field force or eliminating it all together has given rise to the development of “automated meter reading”, or AMR products. The technologies currently employed by numerous companies to obtain meter information are:
Radio frequency (RF)
Telephone
Coaxial cable
Power line carrier (“PLC”)
All AMR technologies employ a device attached to the meter, retrofitted inside the meter or built into/onto the meter. This device is commonly referred to in the meter reading industry as the Meter Interface Unit, or MIU. Many of the MIU's of these competing products are transceivers which receive a “wake up” polling signal or a request for their meter information from a transceiver mounted in a passing vehicle or carried by the meter reader, known as a mobile data collection unit (“MDCU”). The MIU then responsively broadcasts the meter number, the meter reading, and other information to the MDCU. After obtaining all the meter information required, the meter reader attaches the MDCU to a modem line or directly connects it to the utility's computer system to convey the meter information to a central billing location. Usually these “drive by” or “walk by” AMR products operate under Part 15 of the FCC Rules, primarily because of the scarcity of, or the expense of obtaining, licenses to the RF spectrum. While these types of AMR systems do not eliminate the field force of meter readers, they do increase the efficiency of their data collection effort and, consequentially, fewer meter readers are required to collect the data.
Some AMR systems which use RF eliminate the field force entirely by using a network of RF devices that function in a cellular, or fixed point, fashion. That is, these fixed point systems use communication concentrators to collect, store and forward data to the utilities central processing facility. While the communication link between the MIU and the concentrator is almost always either RF under Part 15 or PLC, the communication link between the concentrator and the central processing facility can be telephone line, licensed RF, cable, fiber optic, public carrier RF (CDPD, PCS) or LEO satellite RF. The advantage of using RF or PLC for the “last mile” of the communication network is that it is not dependent on telephone lines and tariffs.
There is desired an improved meter reading device and methodology which improves upon the available AMR products through simplification and ease of use.
SUMMARY OF THE INVENTION
The present invention achieves technical advantages as an AMR device and method of use which is adapted to couple to utility meters to obtain data including a measured quantity of delivered product, and further including control circuitry and a transmitter generating a data signal indicative of the measured quantity at a particular RF frequency and predetermined time interval, without requiring external polling. The control circuitry generates the data signal periodically at a first predetermined time interval which can be selectively programmed via a programming module by a separate programming or diagnostic device. The present invention achieves technical advantages by not requiring external polling to obtain data, thereby simplifying the data collection process by eliminating complicated data exchange protocols and simplifying the equipment required (i.e. using a transmitter at the MIU instead of a transceiver).
The present invention comprises a device having an interface module adapted to couple to a utility meter measuring a quantity of a delivered product, the interface module providing a first signal indicative of the measured quantity. The device further comprises a controller receiving the first signal and generating a data signal indicative of the measured quantity at a first predetermined time interval, without requiring external polling. A transmitter responsively coupled to the controller circuit modulates the data signal, and transmits the modulated data signal at a predetermined RF frequency. Preferably, the controller formats the data signal into a data stream having a plurality of fields. A first field comprises data indicative of the measured quantity of delivered product, i.e. meter reading. Another second field comprises data indicative of an identity of the measuring unit. The device is particularly adapted to obtain the measured quantity of delivered product comprising of electricity, natural gas and water, and can be adapted to other meters delivering product as well.
The present invention further comprises a programming module functionally coupled to the controller and adapted to selectively adjust operating parameters of the controller. The programming module is adapted to selectively adjust, for instance, the predetermined time interval between transmissions of the modulated data signal, for instance, allowing the data to be selectively transmitted ever 10 seconds, ever minute, once an hour, and so forth. The programming module comprises a transceiver adapted to provide data to a diagnostic and programming device indicative of operating characteristics of the device, including any changes of device performance, battery levels, and further allowing the reception of data such as to update of internal software via downloading through the transceiver when desired. The interface module preferably comprises an optical sensor and optical transmitter, such as an Infrared (IR) transceiver.
According to a second embodiment of the present invention, there is provided a method of transmitting a data signal comprising the steps of sensing a utility meter measuring a quantity of a delivered product, and responsively generating a first signal indicative of the sensed measured quantity. The data signal is formatted and has a plurality of fields, wherein a first field is indicative of the sensed measured quantity of product. This formatted data signal is modulated and transmitted as a modulated data signal at a predetermined RF frequency. This modulated data signal is preferably transmitted at a predetermined time interval, and advantageously does not require any external polling signal, complicated data exchange protocols, or complicated data exchange algorithms. The method of the present invention further

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radio frequency automated meter reading device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radio frequency automated meter reading device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radio frequency automated meter reading device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3282128

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.