Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Compositions to be polymerized by wave energy wherein said...
Reexamination Certificate
2000-10-12
2002-01-29
Seidleck, James J. (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Compositions to be polymerized by wave energy wherein said...
C522S162000, C522S164000, C522S111000, C522S188000, C522S184000, C522S047000, C522S105000, C430S270100, C430S326000
Reexamination Certificate
active
06342542
ABSTRACT:
TECHNICAL FIELD
This invention relates to a radiation-sensitive resin composition for manufacture of semiconductor devices or liquid crystal display devices, more particularly, to a radiation-sensitive resin composition for manufacture of semiconductor devices or liquid crystal display devices, which can form a good pattern, shows excellent adhesion to a substrate and yet can be easily removed with a remover.
BACKGROUND ART
In a process for manufacturing semiconductor devices such as IC or LSI or liquid crystal displays, fine patterns have been formed by forming a photoresist layer on a silicon substrate, a substrate having a metal layer such as aluminum, molybdenum, chromium, etc. or a substrate having a metal oxide layer such as ITO (indium tin oxide), irradiating this photoresist layer through a mask pattern with UV light or the like, then developing it, and etching the substrate using the resulting photoresist pattern as the mask.
Various radiation-sensitive resin compositions have conventionally been proposed which are used in such photolithography. Examples of such compositions include the positive-working radiation-sensitive composition wherein an alkali-soluble novolak resin is combined with a radiation-sensitive component of quinonediazide group-containing compound (Japanese Unexamined Patent Publication No. H07-120914) and the negative-working radiation-sensitive composition wherein an alkali-soluble novolak resin, a cross-linking agent of alkoxymethylated melamine, and an acid generating agent of halogenated triazine are combined with each other (Japanese Unexamined Patent Publication No. H05-303196).
Accurate etching of the substrate with the aid of photoresist requires good adhesion between the resist pattern and the substrate. To improve the adhesion between the resist pattern and the substrate, so-called post-baking has been processwise proposed which comprises baking (heat-treating) the photoresist pattern obtained by the development. As an approach of using materials, it has been proposed to add an adhesion-improving agent to the radiation-sensitive resin composition. For example, an adhesion-improving agent such as a benzimidazole, a polybenzimidazole or the like is incorporated in a positive-working photoresist (Japanese Unexamined Patent Publication No. H06-27657) and a benzotriazole is incorporated in a negative-working photoresist (Japanese Unexamined Patent Publication No. H08-339087).
However, as is well known, if post-baking is conducted in order to improve adhesion between the resist and the substrate, subsequent removal of the photoresist becomes difficult particularly with a negative-working photoresist. Further, a positive-working resist is removed generally through dissolution in a remover, whereas a negative-working photoresist is usually swollen and not dissolved, and is removed by peeling. In the case of peeling off the photoresist, however, there arises the problem that the peeled photoresist pieces may again deposit on the substrate to cause pattern defects. Still further, a substrate with an ITO layer absorbs basic components such as amine, etc. in the air which inactivates an acid once generated by light exposure in the photoresist, thus causing a problem of pattern bite into the interface between the photoresist and the substrate. Under such circumstances, there has been demanded a photoresist which can form a good resist pattern, good adhesion to a substrate, and enough high removability to be easily dissolved in a remover or the like.
Therefore, an object of the present invention is to provide a negative- or positive-working radiation-sensitive resin composition containing an alkali-soluble resin which composition can form an undercut- or footing-free excellent resist pattern on a silicon substrate, a substrate having a metal layer or a substrate having a metal oxide layer, which can, even after subjected to heat-treating after development for the purpose of improving adhesion, be easily dissolved in and removed with a remover.
DISCLOSURE OF THE INVENTION
As a result of intensive investigations, the inventors have found that the above-described object can be achieved by incorporating, in a radiation-sensitive resin composition containing an alkali-soluble resin composition, an alkali-soluble resin obtained by using the compound represented by the following general formula (I) as one monomer component (hereinafter also referred to as “aniline modified resin”) as the alkali-soluble resin, thus having completed the present invention based on the finding.
That is, the present invention is a radiation-sensitive resin composition containing an alkali-soluble resin, wherein said alkali-soluble resin contains at least an alkali-soluble resin synthesized using as a monomer component a compound represented by the following general formula (I):
wherein R represents a hydroxyl group or an alkyl group with 1 to 4 carbon atoms, n is 0 or an integer of 1 to 3 and, when n is 2 or 3, each R group may be the same or different.
As the aniline modified resins to be used in the present invention, those which are obtained by polycondensation of the compound represented by the above general formula (I) and a phenol with an aldehyde such as formalin are most preferred. The present invention will therefore be described in more detail by reference to a radiation-sensitive resin composition containing the aniline modified resin obtained by such polycondensation.
As the compounds of the general formula (I) to be used as a monomer component constituting the aniline modified resin, there are illustrated aniline, 2,3-dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, 3,4-dimethylaniline, 3,5-dimethylaniline, 2,6-diethylaniline, 2,6-diisopropylaniline, 3,5-di-tert-butylaniline, 2,4,6-trimethylaniline, 2,4,6-tri-tert-butylaniline, etc. These compounds may be used alone or as a mixture of two or more thereof.
As the phenols to be used as a starting material of the above-described polycondensation resin, any of those may be used which have conventionally been used for forming alkali-soluble resins. Specific examples of such phenols include phenol, p-cresol, m-cresol, o-cresol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, 2,6-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2,3,4-trimethylphenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol, 2,4,5-trimethylphenol, methylenebisphenol, methylenebis-p-cresol, resorcinol, catechol, 2-methylresorcinol, 4-methylresorcinol, o-chlorophenol, m-chlorophenol, p-chlorophenol, 2,3-dichlorophenol, m-methoxyphenol, p-methoxyphenol, p-butoxyphenol, o-ethylphenol, m-ethylphenol, p-ethylphenol, 2,3-diethylphenol, 2,5-diethylphenol, p-isopropylphenol, &agr;-naphthol, &bgr;-naphthol, etc. These compounds may be used alone or in combination of two or more thereof.
As the aldehydes, paraformaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, chloroacetaldehyde, etc. may be used, as well as formalin, alone or as a mixture of two or more thereof.
The aniline modified polycondensation resin to be used in the present invention may readily be obtained in the same manner as with known novolak phenol resins, i.e., by heating the phenol compound and the aldehyde compound in the presence of an acid catalyst to react. Specifically, the aniline modified resin in accordance with the present invention is produced by mixing, with 100 parts by weight of the phenol compound, usually 0.1-60 parts by weight of the compound represented by the general formula (I), 10-20 parts by weight of the aldehyde compound and 1-3 parts by weight of oxalic acid, and conducting the reaction at a reaction temperature of 85-95° C. for at least 4 hours.
The aniline modified resin in accordance with the present invention has a weight average molecular weight of 500-10,000, preferably 1,000-5,000.
The thus obtained aniline modified resin may be used alone or in combination with a conventionally known, aniline unmodified alkali-soluble resin or resins. As the known alkali-soluble resins usable in combination with the aniline
Itoh Haruhiko
Kobayashi Satoshi
Shioda Hidekazu
Clariant Finance (BVI) Limited
Jain Sangya
McClendon Sanza L.
Seidleck James J.
LandOfFree
Radiation-sensitive resin composition does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Radiation-sensitive resin composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiation-sensitive resin composition will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2871926