Radiation-sensitive resin composition

Radiation imagery chemistry: process – composition – or product th – Diazo reproduction – process – composition – or product – Composition or product which contains radiation sensitive...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S165000, C430S192000, C430S193000

Reexamination Certificate

active

06171750

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a radiation-sensitive resin composition containing an alkali-soluble resin. More particularly, this invention relates to a radiation-sensitive resin composition suited for a photoresist used for fabricating integrated circuits, that is well sensitive to a variety of radiations including ultraviolet radiations such as g-rays and i-rays, far-ultraviolet radiations such as KrF excimer laser beams, X-radiations such as synchrotron rays, and charged-particle radiations such as electron rays, and particularly sensitive to ultraviolet radiations and far-ultraviolet radiations.
2. Description of the Prior Art
Positive photoresists are widely used in the fabrication of integrated circuits. As integrated circuits have become more highly integrated in recent years, it is desired to provide positive photoresists that enables formation of photoresist patterns more improved in resolution.
To improve photoresist materials commonly for the purpose of improving the resolution of positive photoresists, a method is available in which e.g., alkali-soluble resins used in photoresists are made to have a low molecular weight. This method, however, may cause a problem that the photoresists may have a low heat resistance. Another method is also available in which, as an approach from process improvement, the numerical aperture (NA) of a stepper is made greater for improving the resolution. This method, however, may cause a problem of resulting in a narrow focal depth (focal latitude), and hence simultaneously requires an improvement of the photoresist material. For example, in order to improve the focal latitude, one of measures therefor is to add a quinonediazide compound in a larger quantity. However, the addition of the quinonediazide compound in a larger quantity results in a poor developability. Thus, in the positive photoresists, an improvement in one performance brings about a lowering of another performance. Accordingly, it is required to provide a positive photoresist simultaneously having a high resolution, a good focal latitude and a good developability in a fine pattern.
For example, Japanese Pre-examination Patent Publication (kokai) No. 8-262710 discloses a positive photoresist composition containing (A) an alkali-soluble resin obtained by subjecting at least one phenol compound represented by the following general formula (I) and at least one phenol compound other than the phenol compound of the formula (I) to condensation with an aldehyde in the presence of an acid catalyst and (B) a quinonediazidosulfonic acid ester radiation-sensitive agent.
wherein R
1
represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group or a substituted or unsubstituted aryl group; and R
2
to R
6
each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group or a substituted or unsubstituted cycloalkyl group, and any one of R
2
, R
4
and R
6
is a hydrogen atom provided that two or more of them are not hydrogen atoms at the same time. As the alkali-soluble resin, the publication specifically discloses a resin obtained by condensation of a combination of 2,6-dimethylphenol and a phenol other than the phenol compound of the general formula (I), e.g., m-cresol, with an aldehyde.
However, the positive photoresist composition disclosed therein has insufficient performances in respect of resolution, developability, heat resistance, pattern shape, exposure margin and focal latitude, and also has a problem that these performances are ill balanced.
SUMMARY OF THE INVENTION
Accordingly, an object of the present invention is to provide a radiation-sensitive resin composition that has superior performances in respect of resolution, developability, heat resistance, pattern shape, exposure margin and focal latitude, and also can exhibit these performances in a well balanced state.
According to the present invention, the above object can be achieved by a radiation-sensitive resin composition comprising:
(A) an alkali-soluble resin obtained by subjecting at least one phenol represented by the following general formula (1) (hereinafter “first phenol”):
wherein R
1
and R
2
are the same or different and each represent an alkyl group, a cycloalkyl group, an alkoxyl group or an aryl group; and at least one phenol selected from the group consisting of hydroxybenzene(phenol), o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,5-dimethylphenol, 2,6-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol, resorcinol, 2-methylresorcinol, 4-ethylresorcinol, hydroquinone, methylhydroquinone, catechol, 4-methylcatechol, pyrogallol, phloroglucinol, thymol and isothymol (hereinafter “second phenol”) to condensation with an aldehyde in the presence of an acidic catalyst; and
(B) a quinonediazidosulfonic acid ester compound.
The radiation-sensitive resin composition of the present invention has superior performances in respect of resolution, developability, heat resistance, pattern shape, exposure margin and focal latitude, and also can exhibit these performances in a well balanced state. It also can effectively prevent occurrence of scum and also has a good sensitivity. Hence, the present composition is preferably usable as a photoresist for the fabrication of integrated circuits with a high integration.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention will be described below in detail.
(A) Alkali-soluble Resin
The alkali-soluble resin used as the component (A) in the present invention (hereinafter often “resin (A)”) is produced by using a phenol compound comprised of a first phenol represented by the general formula (1):
wherein R
1
and R
2
are the same or different and each represent an alkyl group, a cycloalkyl group, an alkoxyl group or an aryl group; and at least one second phenol selected from the group detailed later.
First phenol:
The first phenol represented by the general formula (1) may specifically include 2,4-dimethylphenol, 2-methyl-4-ethylphenol, 2-ethyl-4-methylphenol, 2-methyl-4-propylphenol, 2-propyl-4-methylphenol, 2-methyl-4-isopropylphenol, 2-isopropyl-4-methylphenol, 2-methyl-4-t-butylphenol, 2-t-butyl-4-methylphenol, 2,4-diethylphenol, 2,4-diisopropylphenol, 2,4-di-t-butylphenol, 2-methyl-4-cyclohexylphenol, 2-cyclohexyl-4-methylphenol, 2-methyl-4-methoxyphenol, 2-methoxyl-4-methylphenol, 2-methyl-4-t-butoxyphenol, 2-t-butoxy-4-methylphenol, 2,4-dimethoxylphenol, 2-methyl-4-phenylphenol, 2-phenyl-4-methylphenol and 2,4-diphenylphenol. Any of these may be used alone or in combination of two or more.
Of the above examples, preferred phenols are, e.g., 2,4-dimethylphenol, 2-methyl-4-ethylphenol, 2-ethyl-4-methylphenol, 2-methyl-4-propylphenol, 2-propyl-4-methylphenol, 2-methyl-4-isopropylphenol, 2-isopropyl-4-methylphenol, 2-methyl-4-t-butylphenol, 2-t-butyl-4-methylphenol and 2,4-di t-butylphenol.
Second phenol:
The second phenol is selected from the group consisting of phenol, o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,5-dimethylphenol, 2,6-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol, resorcinol, 2-methylresorcinol, 4-ethylresorcinol, hydroquinone, methylhydroquinone, catechol, 4-methyl-catechol, pyrogallol, phloroglucinol, thymol and isothymol. Of these second phenols, phenol, o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,5-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol and 2,3,5-trimethylphenol are preferred. Particularly preferred are m-cresol, p-cresol and 2,5-dimethylphenol.
Any of these second phenols may be used alone or in combination of two or more.
There are no particular limitations on the combination of the first phenol with the second phenol. Any phenols selected from the respective ones may be combined. Such a combination may include, e.g., 2,4-dimethylphenol/m-cresol, 2,4-dimethylphenol/m-cresol/phenol, 2,4-dimethylphenol/m-cresol/p-cresol, 2,4-dimethylphenol/m-cresol/2,3-dim

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radiation-sensitive resin composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radiation-sensitive resin composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiation-sensitive resin composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2467897

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.