Radiation image read-out apparatus

Radiant energy – Source with recording detector – Using a stimulable phosphor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S584000, C250S586000, C250S582000, C250S484400

Reexamination Certificate

active

06444997

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a radiation image read-out apparatus, and more specifically, to a radiation image read-out apparatus for reading an image recorded on a stimulable phosphor sheet using a line sensor.
2. Description of the Related Art
Heretofore, there have been widely used radiation image recording and reproducing systems utilizing stimulable phosphors. Specifically, a radiation image of an object (e.g., a human body) is recorded on a stimulable phosphor sheet, which includes a substrate and a layer of the stimulable phosphor overlaid on the substrate. A beam of stimulating light (e.g., a laser beam or a beam of visible light) is variably deflected to scan individual pixels of the radiation image recorded on the stimulable phosphor sheet. The beam of the stimulating light causes each pixel to emit stimulated emission light in proportion to the amount of radiation energy stored thereon. The light emitted successively from the individual pixels of the radiation image recorded on the stimulable phosphor sheet is photoelectrically detected and converted into an electric image signal by photoelectric read-out means. After the entire surface of the stimulable phosphor sheet is scanned, the stimulable phosphor sheet is exposed to erasing light so that the radiation energy remaining thereon is completely released.
The image signal, which has been obtained by the radiation image recording and reproducing system, is then subjected to image processing. The image processing may include gradation processing, processing in the frequency domain, etc., for reproducing the radiation image in a visible form having image quality high enough to serve as an effective tool in conducting efficient and accurate diagnosis of a diseased portion. The visible image for diagnosis reproduced from the image signal may be printed on a film or may be displayed on a high resolution cathode ray tube (CRT) display device. After the erasing light releases the residual radiation energy on the stimulable phosphor sheet, the stimulable phosphor sheet may be reused for recording of another radiation image.
Novel radiation image read-out apparatuses for use in the radiation image recording and reproducing systems as described above have been proposed in, e.g., Japanese Unexamined Patent Publications Nos. 60(1985)-11568, 60(1985)-236354 and 1(1989)-101540. The radiation image read-out apparatuses in the above listed publications are directed to shortening the time required for detecting the stimulated emission light, to downsizing the apparatus, and to realizing a lower operation cost. To achieve those objects, each of the proposed radiation image read-out apparatuses includes a linear light source as the stimulating light source for irradiating the stimulable phosphor sheet with a linear beam of the stimulating light, and a line sensor as the photoelectronoc read-out means having a plurality of photoelectronic conversion elements aligned parallel to a linear beam spot of the stimulating light on the stimulable phosphor sheet. Each of the proposed radiation image read-out apparatuses also includes scanning means for moving the linear light source and the line sensor relative to the stimulable phosphor sheet in directions substantially perpendicular to the linear beam spot on the stimulable phosphor sheet.
The proposed radiation image read-out apparatus utilizing the line sensor may further comprise an array of lenses providing certain refraction index distribution, e.g., an array of SELFOC lenses (registered trademark) or rod lenses, to sufficiently focus the stimulated emission light emitted from the stimulable phosphor sheet onto the line sensor. Such an array of lenses providing certain refraction index distribution realizes one-to-one correspondence between the size of the recorded image and the size of the obtained image. The individual lenses in the array are arranged in accordance with the arrangement of the photoelectronic conversion elements on the line sensor. For example, if the photoelectronic conversion elements are arranged on the line sensor as shown in
FIG. 2
, the individual lenses in the array will be arranged as shown in FIG.
3
.
However, as is clear from
FIG. 3
, the array of the lenses providing certain refraction index distribution naturally includes non-aperture regions, i.e., those regions among the lenses. The non-aperture regions are lower in transmittance of the stimulated emission light than aperture regions (or lens regions). Some portion of the stimulated emission light emitted from the stimulable sheet passes the non-aperture regions while the other portion of the stimulated emission light passes the aperture regions before reaching the line sensor. Therefore, a spurious stripe pattern having a pitch corresponding to the pitch of the non-aperture regions may appear on an image reproduced from the image signal obtained by the radiation image read-out apparatus. Each stripe will be perpendicular to the length direction of the line sensor.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a radiation image read-out apparatus capable of removing from a read-out image a spurious stripe pattern due to non-aperture regions of the lens array.
According to the first aspect of the present invention, there is provided a radiation image read-out apparatus comprising: a linear light source for irradiating a stimulable phosphor sheet carrying a radiation image recorded thereon with a linear beam of stimulating light; a line sensor comprising a plurality of photoelectric conversion elements arranged parallel to a linear area on the stimulable phosphor sheet irradiated with the linear beam of the stimulating light, each of said photoelectric conversion elements being capable of photoelectrically converting stimulated emission light received thereon, said stimulable emission light being emitted from the linear area on the stimulable phosphor sheet irradiated with the linear beam or from a corresponding linear area on the opposite side of the stimulable phosphor sheet; focusing means located between the stimulable phosphor sheet and the line sensor for focusing the stimulated emission light onto each of the photoelectric conversion elements, said focusing means including a lens array; scanning means for moving the linear light source and the line sensor relative to the stimulable phosphor sheet in a direction not parallel to the linear area on the stimulable phosphor sheet irradiated with the linear beam of the stimulating light; read-out means for deriving an image signal representing the radiation image recorded on the stimulable phosphor means from the electric signal outputted by the line sensor while the linear light source and the line sensor is moved relative to the stimulable phosphor sheet; and spurious pattern removing means for obtaining a processed image signal by removing from the image signal a spurious pattern signal due to non-aperture regions on the lens array.
The linear light source may be a light source having a linear shape by itself, such as a fluorescent lamp, a cold cathode fluorescent lamp or an LED array. Otherwise, the linear light source may be a light source which does not have a linear shape by itself but is capable of emitting a linear beam, such as a broad area laser. Although the linear beam of the stimulating light emitted by the linear light source may be either of a continuous beam or a pulse-like beam, use of the pulse-like beam is preferred in order to reduce resultant noise.
It is preferable to make the length of the beam spot of the linear beam of the stimulating light equal to or longer than the length of one side of the stimulable phosphor sheet. The linear area on the stimulable phosphor sheet irradiated with the linear beam of the stimulating light may be aligned parallel to the side of the stimulable phosphor sheet, or may be defined at a certain angle with respect to the side of the stimulable phosphor sheet.
It is preferable to provide between the linear light sou

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radiation image read-out apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radiation image read-out apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiation image read-out apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2862855

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.